A conjectural relation between crystals and WKB analysis

Xiaomeng Xu Peking University

Trends in Cluster Algebras 2022 Sep 20-22, 2022

Xiaomeng Xu Peking University A conjectural relation between crystals and WKB and

Main conjecture (quantum version)

Following Iwaki and Nakanishi, WKB analysis, cluster algebra.

• Associated to any $u \in \mathfrak{h}_{reg}$ and $\rho : U(\mathfrak{gl}_n) \to L(\lambda)$, we construct a representation $S_q(u)$ of $U_q(\mathfrak{gl}_n)$ on the same space $L(\lambda)$.

Conjecture

The $q \to 0$ leading asymptotics of the image of the canonical basis under the map $S_q(u)$ correspond to an eigenbasis $E(u; \lambda)$ of the action of the shift of argument subalgebra $\mathcal{A}(u) \subset U(\mathfrak{gl}_n)$ on $L(\lambda)$.

Main motivation

- "Solve" the linear system on z-plane $\frac{dF}{dz} = A(z) \cdot F$.
- Consider $\frac{dF}{dz} = \left(\frac{A}{z} + \frac{B}{z-1}\right) \cdot F$, then

$$\begin{cases} F(z) \sim z^{[A]}C_0, & as \ z \to 0, \\ F(z) \sim (z-1)^{[B]}C_1, & as \ z \to 1. \end{cases}$$

Connection problem: knowing C_0 to write down explicitly C_1 . Monodromy in Ishibashi's talk.

Example $(2 \times 2 \text{ case})$

$${}_{2}F_{1}(a,b,c;z) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} {}_{2}F_{1}(a,b,a+b+1-c;1-z) \\ + \frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)} (1-z)^{c-a-b} {}_{2}F_{1}(c-a,c-b,1+c-a-b;1-z)$$

The Stokes phenomenon

• Consider $\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right) \cdot F$, $u = \text{diag}(u_1, ..., u_n)$, and $A \in \mathfrak{gl}_n$. There exits two opposite sectoral regions Sect_{\pm}

$$\begin{cases} F(z) \sim e^{-u/z} z^{[A]} C_0, \text{ as } z \to 0 \text{ in Sect}_+, \\ F(z) \sim e^{-u/z} z^{[A]} C_1, \text{ as } z \to 0 \text{ in Sect}_-. \end{cases}$$

Connection problem: knowing C_0 to write down C_1 .

• Normalize $C_0 = 1$, then $S_+(u, A) := C_1$. Similarly we introduce $S_-(u, A)$. The so called Stokes matrices.

Example $(2 \times 2 \text{ case})$

Set
$$_1F_1(\alpha,\beta;z) = \sum_{n=0}^{\infty} \frac{\alpha^{(n)}z^{-n}}{\beta^{(n)}n!}$$
, where $\alpha^{(n)} = \alpha \cdots (\alpha + n - 1)$,

$${}_1F_1(\alpha,\beta;z) \sim \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)} (-z)^{\alpha} (1+O(z)) + \frac{\Gamma(\beta)}{\Gamma(\alpha)} e^{-\frac{1}{z}} z^{-\alpha+\beta} (1+O(z)) + \frac{\Gamma(\beta)}{\Gamma(\alpha)} e^{-\frac{1}{z}} z^{-\frac{1}{z}} (1+O(z)) + \frac{\Gamma(\beta)}{\Gamma(\alpha)} e^{-\frac{1}{z}} z^{-\frac{1}{z}} (1+O(z)) + \frac{\Gamma(\beta)}{\Gamma$$

・ロト ・御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example: 2 by 2

• We consider
$$\frac{dF}{dz} = \begin{pmatrix} \frac{1}{z^2} \begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix} + \frac{1}{z} \begin{pmatrix} t_1 & a \\ b & t_2 \end{pmatrix} \end{pmatrix} F.$$

Then

$$S_{+}(A, u) = \begin{pmatrix} e^{t_1} & \frac{a((u_2 - u_1))^{t_1 - t_2}}{\Gamma(1 - \lambda_1 + t_1)\Gamma(1 - \lambda_2 + t_1)} \\ 0 & e^{t_2} \end{pmatrix}$$

Here λ_1, λ_2 are eigenvalues of $\begin{pmatrix} t_1 & a \\ b & t_2 \end{pmatrix}$.

• Black box:

$$(u, A) \mapsto \left(S_+(u, A), S_-(u, A)\right) \in B_+ \times B_-.$$

Here the entries of $S_{\pm}(u, A)$ are "new" transcendental functions on the linear space (u, A).

• The aim of our project is to first develop algebraic understanding of various aspects of the Stokes phenomenon (solving the connection problem of meromorphic ODEs).

• By pursuing the heuristics of the algebraic understanding, we are led to rather interesting conjectures:

- a characterization of the Stokes phenomenon in the WKB approximation via the theory of crystal basis (Kashiwara and Lusztig);
- an algebraic characterization of confluent hypergeometric type equations which have soliton solutions (Jimbo-Miwa-Ueno).

イロト イロト イヨト イヨト 三日

Part I

The quantum setting: WKB approximation of Stokes matrices and $\mathfrak{gl}_n\text{-}\mathrm{crystals}$

A \mathfrak{gl}_n -crystal is a finite set which models a weight basis for a representation of \mathfrak{gl}_n , and Kashiwara/crystal operators indicate the leading order behaviour of the simple root vectors on the basis under the crystal limit $q \to 0$ in quantum group $U_q(\mathfrak{gl}_n)$.

Stokes matrices of ODEs in the quantum case

- $U(\mathfrak{gl}_n)$: generator $\{E_{ij}\}$, relation $[E_{ij}, E_{kl}] = \delta_{jk}E_{il} \delta_{li}E_{kj}$.
- $n \times n$ matrix $T = (T_{ij})$ with entries valued in $U(\mathfrak{gl}_n)$

$$T_{ij} = E_{ij}, \quad for \ 1 \le i, j \le n.$$

For any $u \in \mathfrak{h}_{reg} n$ by n diagonal matrices with distinct eigenvalues and a representation $L(\lambda)$, consider

$$\frac{1}{h}\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F,$$

for a $n \times n$ matrix function F(z) with entries in $\operatorname{End}(L(\lambda))$.

• Stokes matrices $S_{h\pm}(u) = (s_{ij}^{(\pm)})$, with entries $s_{ij}^{(\pm)}$ in $\operatorname{End}(L(\lambda))$, i.e., $S_{h\pm} \in \operatorname{End}(L(\lambda)) \otimes \operatorname{End}(\mathbb{C}^n)$.

Representations of quantum group from Stokes matrices

Theorem (Xu)

For any fixed $h \in \mathbb{C}^*$ and $u \in \mathfrak{h}_{reg}$, the map (with $q = e^{\pi i h}$)

$$S_q(u): U_q(\mathfrak{gl}_n) \to \operatorname{End}(L(\lambda)) ; e_i \mapsto S_{h+}(u)_{i,i+1}, f_i \mapsto S_{h-}(u)_{i+1,i}$$

defines a representation of the Drinfeld-Jimbo quantum group $U_q(\mathfrak{gl}_n)$ on the vector space $L(\lambda)$. Here $U_q(\mathfrak{gl}_n)$ is an associative algebra with generators $q^{\pi\sqrt{-1}h_i}, e_j, f_j, 1 \leq j \leq n-1, 1 \leq i \leq n$ and:

• for each
$$1 \le i \le n$$
, $1 \le j \le n-1$,

$$q^{h_i} e_j q^{-h_i} = q^{\delta_{ij}} q^{-\delta_{i,j+1}} e_j, \quad q^{h_i} f_j q^{-h_i} = q^{-\delta_{ij}} q^{\delta_{i,j+1}} f_j;$$

• for each $1 \leq i, j \leq n-1$,

$$[e_i, f_j] = \delta_{ij} \frac{q^{h_i - h_{i+1}} - q^{-h_i + h_{i+1}}}{q - q^{-1}};$$

• for
$$|i - j| = 1$$
,
 $e_i^2 e_j - (q + q^{-1}) e_i e_j e_i + e_j e_i^2 = 0$,
 $f_i^2 f_j - (q + q^{-1}) f_i f_j f_i + f_j f_i^2 = 0$,

and for $|i - i| \neq 1$, $[e_i, e_j] = 0 = [f_i, f_j]$.

/20

WKB analysis and crystals

- WKB analysis: $\frac{1}{h^2} \frac{d^2 \psi}{dz^2} V\psi = 0$ (Wentzel-Kramers-Brillouin).
- The algebraic characterization of the $h \to -i\infty$ asymptotics of $S_{-}(x) \in \operatorname{End}(I(x)) \otimes \operatorname{End}(\mathbb{C}n)$ of $dF_{-} = h\left(u + T\right) = F_{-}$

of $S_{h\pm}(u) \in \operatorname{End}(L(\lambda)) \otimes \operatorname{End}(\mathbb{C}^n)$ of $\frac{dF}{dz} = h\left(\frac{u}{z^2} + \frac{T}{z}\right) \cdot F$.

Conjecture (Xu, proved in a special case)

For any $u \in \mathfrak{h}_{reg}$, there exists a "canonical" basis $\{v_I(u)\}$ of $L(\lambda)$, operators $\tilde{e}_k(u)$ and $\tilde{f}_k(u)$ for k = 1, ..., n - 1 such that there exists constants c, c'

$$\lim_{q=e^{\pi i h} \to 0} q^c s_{k,k+1}^{(+)}(u) \cdot v_I(u) = \tilde{e}_k(v_I(u)),$$
$$\lim_{q=e^{\pi i h} \to 0} q^{c'} s_{k+1,k}^{(-)}(u) \cdot v_I(u) = \tilde{f}_k(v_I(u)).$$

Furthermore, the datum $(\{v_I(u)\}, \tilde{e}_k(u), \tilde{f}_k(u))$ is a \mathfrak{gl}_n -crystal.

• Crystal limit $q \to 0$ in $U_q(\mathfrak{gl}_n)$. • $\{v_I(u)\}$ eigenbasis of the shfit of argument subalgebra (Feigin-Frenkel-Rybnikov)

Part II

The semiclassical setting: WKB approximation of Stokes matrices and cluster algebras

The geometry in the WKB approximation

• WKB analysis: $\frac{1}{\hbar^2}\frac{d^2\psi}{dz^2} - V(z)\psi = 0$. The $\hbar \to 0$ he
havior is related to the Stokes graphs on z-plane determined by
 V(x). (many viewpoints: Voros, Delabaere-Dillinger-Pham, Gaiotto-Moore-Neitzke, Iwaki-Nakanishi, Bridgeland-Smith, Aoki-Honda-Kawai- Koike-Nishikawa-Sasaki-Shudo-Takei ...)

• Set ε a small real parameter, consider $\varepsilon \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$.

• Problem: between the asymptotics of $S(u, A; \varepsilon)$ as $\varepsilon \to 0$ and the geometry of the spectral curve

$$\det\left[\lambda - \left(\frac{u}{z^2} + \frac{A}{z}\right)\right] = 0.$$

$$\begin{split} \mathbf{Example} & (2 \text{ by } 2 \text{ case}) \\ S(A, u; \varepsilon) = \begin{pmatrix} e^{\frac{t_1}{\varepsilon}} & \frac{a(\frac{i(u_2 - u_1)}{\varepsilon})^{\frac{t_1 - t_2}{2\pi i\varepsilon}}}{\Gamma(1 - \frac{\lambda_1 - t_1}{2\pi i\varepsilon})\Gamma(1 - \frac{\lambda_2 - t_1}{2\pi i})} \\ 0 & e^{\frac{t_2}{\varepsilon}} \end{pmatrix} \sim \begin{pmatrix} e^{\frac{t_1}{\varepsilon}} & e^{\frac{\max(\lambda_1, \lambda_2)}{\varepsilon}} \\ 0 & e^{\frac{t_2}{\varepsilon}} \end{pmatrix} \\ \end{pmatrix}_{OQ} \end{split}$$

A fake analysis

• solutions of $\varepsilon \frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$ have the WKB type expansion,

$$F(z,\varepsilon) \sim e^{\frac{\omega(z)}{\varepsilon}}(v(z) + \sum \phi_k \varepsilon^k), \quad as \ \varepsilon \to 0,$$
 (1)

where $\omega(z) = \text{diag}(\omega_1, ..., \omega_n)$ is a diagonal matrix, and v(z) is a $n \times n$ matrix with columns v_k .

• Leading asymptotics: $d\omega_k/dz$ and $v_k(z)$ satisfy

$$\frac{d\omega_k}{dz} \cdot v_k(z) = \left(\frac{u}{z^2} + \frac{A}{z}\right) \cdot v_k(z),$$

i.e., $\omega(z) = \operatorname{diag}(\int_{p_1}^z \lambda dt, \dots, \int_{p_n}^z \lambda dt).$

• Stokes phenomenon takes place in the asymptotics $\varepsilon \to 0$ in a way that the approximation in (1) is not uniformly valid w.r.t z around 0. Then the asymptotics of Stokes matrices as $\varepsilon \to 0$ should be encoded by certain periods on the spectral curve.

Main conjecture (semiclassical case)

• A coordinate chart on the space of upper triangular matrices from cluster algebra theory: $\{\Delta_i^{(j)}\}_{1 \le i \le j \le n}$ the minor formed by intersecting columns i - j + 1 to i and the first j rows.

• Spectral curve $\Gamma(u, A)$ of genus $\frac{(n-1)(n-2)}{2}$

$$\det\left[\lambda - \left(\frac{u}{z^2} + \frac{A}{z}\right)\right] = 0.$$

Conjecture (Alekseev-X-Zhou, proved in a special case)

For generic u and A, there exists a canonical set of cycles $\{C_i^{(k)}\}_{1 \le i \le k \le n}$ on $\Gamma(u, A)$ such that

$$\lim_{\varepsilon \to 0} \left(\varepsilon \log \left| \Delta_i^{(k)}(S(A, u, \varepsilon)) \right| \right) = \int_{C_i^{(k)}(u, A)} \omega.$$

• analytic difficult (left); • the discrete choice of cycles (right).

• K. Takasaki, Dual isomonodromic problem, Whitham equation

Soliton solutions

• From the representation of $U_q(\mathfrak{gl}_n)$ at roots of unity

Conjecture

The equation
$$\frac{dF}{dz} = \left(\frac{u}{z^2} + \frac{A}{z}\right)F$$
 has a soliton solution of the form

$$F(z) = (1 + H_1 z^{-1} + \dots + H_m z^{-m}) \cdot e^{-u/z} z^{[A]},$$

if and only if the set of periods $\{\int_{C_i^{(k)}} \omega\}_{1 \le k \le n}$ constitutes a Gelfand-Tsetlin pattern, i.e.,

$$\int_{C_i^{(k)}} \omega - \int_{C_{i-1}^{(k+1)}} \omega \in \mathbb{Z}_+, \quad \int_{C_i^{(k+1)}} \omega - \int_{C_i^{(k)}} \omega \in \mathbb{Z}_+.$$

• The name of soliton is after Jimbo-Miwa-Ueno.

Part III

The technical tool: expression of Stokes matrices via the asymptotics of isomonodromy deformation equations

Isomonodromy deformation equations

• Jimbo-Miwa-Môri-Sato, Jimbo-Miwa-Ueno ...

Set $u = \text{diag}(u_1, ..., u_n)$. The system of equations for $F(z, u) \in GL(n)$ is compatible

$$\begin{cases} \frac{\partial F}{\partial z} = \left(\frac{u}{z^2} + \frac{A(u)}{z}\right)F,\\ \frac{\partial F}{\partial u_i} = \left(\frac{E_{ii}}{z} + V_i(u)\right)F, \end{cases}$$

if and only if

$$\frac{\partial A(u)}{\partial u_i} = [A(u), V_i(u)], \text{ for all } i = 1, ..., n.$$

Here V_i is off-diagonal determined by $[u, V_i] = [E_{ii}, A(u)]$.

- Isomonodromy: $S_{\pm}(u, A(u))$ is locally constant.
- Inverse scattering: Stokes matrices are scattering data.
- As n = 3, Painlevé VI function, connection formula (Jimbo).

Asymptotic solution to Riemann-Hilbert problem

Scattering:
$$(u, A(u)) \mapsto S_+(u, A(u)) = \begin{pmatrix} e^{t_1} & \frac{a((u_2 - u_1))^{t_1 - t_2}}{\Gamma(1 - \lambda_1 + t_1)\Gamma(1 - \lambda_2 + t_1)} \\ 0 & e^{t_2} \end{pmatrix}$$

Theorem (Xu)

The sub-diagonals of $S_+(u, A(u))$ are

$$S_{k,k+1} = \sum_{i=1}^{k} \frac{\prod_{l=1,l\neq i}^{k} \Gamma(\lambda_{l}^{(k)} - \lambda_{i}^{(k)})}{\prod_{l=1}^{k+1} \Gamma(\lambda_{l}^{(k+1)} - \lambda_{i}^{(k)})} \frac{\prod_{l=1,l\neq i}^{k} \Gamma(\lambda_{l}^{(k)} - \lambda_{i}^{(k)})}{\prod_{l=1}^{k-1} \Gamma(\lambda_{l}^{(k-1)} - \lambda_{i}^{(k)})} \cdot m_{i}^{(k)}, \ k = 1, \dots, n-1$$

where $\{\lambda_i^{(k)}\}_{i=1,...,k}$ are the eigenvalues of the k-th principal submatrix of $A_{\infty} \in \mathfrak{gl}_n$, and A_{∞} is such that

$$A(u) = \left(\prod_{k} \left(\frac{u_k}{u_{k+1}}\right)^{\frac{\delta_k(A_\infty)}{2\pi\iota}}\right)^{-1} \cdot A_\infty \cdot \left(\prod_{k} \left(\frac{u_k}{u_{k+1}}\right)^{\frac{\delta_k(A_\infty)}{2\pi\iota}}\right) + O\left(\frac{1}{u_2 - u_1}\right),$$

as $\frac{u_k - u_{k-1}}{u_{k+1} - u_k} \to 0$ for all k = 1, ..., n-1. The other entries are given by explicit algebraic combinations of the sub-diagonal ones.

• By the isomonodromy property, the leading term gives a

18 / 20

Proof of the second conjecture near a limiting point

• Fixing
$$u_1, ..., u_{n-1}$$
, let $u_n \to \infty$,
• As $u_1 << \cdots << u_n$, set $\{V_i^{(k)}\}_{1 \le i \le k \le n}$ the vanishing cycles.
Theorem (Alekseev-X-Zhou)
As u_k/u_{k+1} sufficiently small, the cycles $C_i^{(k)} = \sum_{j=1}^i V_{k-j}^{(k)}$ on $\Gamma(u, A)$ such that

$$\lim_{\varepsilon \to 0} \left(\varepsilon \lim_{u_1 \ll \cdots \ll u_n} (\log |\Delta_i^{(k)}(S(A, u; \varepsilon))|)\right) = \lim_{u_1 \ll \cdots \ll u_n} \int_{C_i^{(k)}} \omega$$
• Conjecture $\lim_{\varepsilon \to 0} \left(\varepsilon (\log |\Delta_i^{(k)}(S(A, u; \varepsilon))|)\right) = \int_{C_i^{(k)}} \omega$.

19/20

Thank you very much!