A conjectural relation between crystals and WKB analysis

Xiaomeng Xu
Peking University

Trends in Cluster Algebras 2022 Sep 20-22, 2022

Main conjecture (quantum version)

Following Iwaki and Nakanishi, WKB analysis, cluster algebra.

- Associated to any $u \in \mathfrak{h}_{\text {reg }}$ and $\rho: U\left(\mathfrak{g l}_{n}\right) \rightarrow L(\lambda)$, we construct a representation $\mathcal{S}_{q}(u)$ of $U_{q}\left(\mathfrak{g l}_{n}\right)$ on the same space $L(\lambda)$.

Conjecture

The $q \rightarrow 0$ leading asymptotics of the image of the canonical basis under the map $\mathcal{S}_{q}(u)$ correspond to an eigenbasis $E(u ; \lambda)$ of the action of the shift of argument subalgebra $\mathcal{A}(u) \subset U\left(\mathfrak{g l}_{n}\right)$ on $L(\lambda)$.

Main motivation

- "Solve" the linear system on z-plane $\frac{d F}{d z}=A(z) \cdot F$.
- Consider $\frac{d F}{d z}=\left(\frac{A}{z}+\frac{B}{z-1}\right) \cdot F$, then

$$
\begin{cases}F(z) \sim z^{[A]} C_{0}, & \text { as } z \rightarrow 0, \\ F(z) \sim(z-1)^{[B]} C_{1}, & \text { as } z \rightarrow 1 .\end{cases}
$$

Connection problem: knowing C_{0} to write down explicitly C_{1}. Monodromy in Ishibashi's talk.

Example (2×2 case)

$$
\begin{aligned}
{ }_{2} F_{1}(a, b, c ; z) & =\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} 2 F_{1}(a, b, a+b+1-c ; 1-z) \\
& +\frac{\Gamma(c) \Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}(1-z)^{c-a-b}{ }_{2} F_{1}(c-a, c-b, 1+c-a-b ; 1-z)
\end{aligned}
$$

The Stokes phenomenon

- Consider $\frac{d F}{d z}=\left(\frac{u}{z^{2}}+\frac{A}{z}\right) \cdot F, u=\operatorname{diag}\left(u_{1}, \ldots, u_{n}\right)$, and $A \in \mathfrak{g r}_{n}$. There exits two opposite sectoral regions Sect $_{ \pm}$

$$
\left\{\begin{array}{l}
F(z) \sim e^{-u / z} z^{[A]} C_{0}, \text { as } z \rightarrow 0 \text { in } \text { Sect }_{+} \\
F(z) \sim e^{-u / z} z^{[A]} C_{1}, \text { as } z \rightarrow 0 \text { in Sect }
\end{array}\right.
$$

Connection problem: knowing C_{0} to write down C_{1}.

- Normalize $C_{0}=1$, then $S_{+}(u, A):=C_{1}$. Similarly we introduce $S_{-}(u, A)$. The so called Stokes matrices.

Example (2×2 case)

Set ${ }_{1} F_{1}(\alpha, \beta ; z)=\sum_{n=0}^{\infty} \frac{\alpha^{(n)} z^{-n}}{\beta^{(n)} n!}$, where $\alpha^{(n)}=\alpha \cdots(\alpha+n-1)$,

$$
{ }_{1} F_{1}(\alpha, \beta ; z) \sim \frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)}(-z)^{\alpha}(1+O(z))+\frac{\Gamma(\beta)}{\Gamma(\alpha)} e^{-\frac{1}{z}} z^{-\alpha+\beta}(1+O(z))
$$

Example: 2 by 2

- We consider $\frac{d F}{d z}=\left(\frac{1}{z^{2}}\left(\begin{array}{cc}u_{1} & 0 \\ 0 & u_{2}\end{array}\right)+\frac{1}{z}\left(\begin{array}{cc}t_{1} & a \\ b & t_{2}\end{array}\right)\right) F$.

Then

$$
S_{+}(A, u)=\left(\begin{array}{cc}
e^{t_{1}} & \frac{a\left(\left(u_{2}-u_{1}\right)\right)_{1}-t_{2}}{\Gamma\left(1-\lambda_{1}+t_{1}\right) \Gamma\left(1-\lambda_{2}+t_{1}\right)} \\
0 & e^{t_{2}}
\end{array}\right)
$$

Here λ_{1}, λ_{2} are eigenvalues of $\left(\begin{array}{cc}t_{1} & a \\ b & t_{2}\end{array}\right)$.

- Black box:

$$
(u, A) \mapsto\left(S_{+}(u, A), S_{-}(u, A)\right) \in B_{+} \times B_{-}
$$

Here the entries of $S_{ \pm}(u, A)$ are "new" transcendental functions on the linear space (u, A).

Idea

- The aim of our project is to first develop algebraic understanding of various aspects of the Stokes phenomenon (solving the connection problem of meromorphic ODEs).
- By pursuing the heuristics of the algebraic understanding, we are led to rather interesting conjectures:
- a characterization of the Stokes phenomenon in the WKB approximation via the theory of crystal basis (Kashiwara and Lusztig);
- an algebraic characterization of confluent hypergeometric type equations which have soliton solutions (Jimbo-Miwa-Ueno).

Part I

The quantum setting: WKB approximation of Stokes matrices and $\mathfrak{g l}_{n}$-crystals

A $\mathfrak{g l}_{n}$-crystal is a finite set which models a weight basis for a representation of $\mathfrak{g l}_{n}$, and Kashiwara/crystal operators indicate the leading order behaviour of the simple root vectors on the basis under the crystal limit $q \rightarrow 0$ in quantum group $U_{q}\left(\mathfrak{g l}_{n}\right)$.

Stokes matrices of ODEs in the quantum case

- $U\left(\mathfrak{g l}_{n}\right)$: generator $\left\{E_{i j}\right\}$, relation $\left[E_{i j}, E_{k l}\right]=\delta_{j k} E_{i l}-\delta_{l i} E_{k j}$.
- $n \times n$ matrix $T=\left(T_{i j}\right)$ with entries valued in $U\left(\mathfrak{g l}_{n}\right)$

$$
T_{i j}=E_{i j}, \quad \text { for } 1 \leq i, j \leq n
$$

For any $u \in \mathfrak{h}_{\text {reg }} n$ by n diagonal matrices with distinct eigenvalues and a representation $L(\lambda)$, consider

$$
\frac{1}{h} \frac{d F}{d z}=\left(\frac{u}{z^{2}}+\frac{T}{z}\right) \cdot F
$$

for a $n \times n$ matrix function $F(z)$ with entries in $\operatorname{End}(L(\lambda))$.

- Stokes matrices $S_{h \pm}(u)=\left(s_{i j}^{(\pm)}\right)$, with entries $s_{i j}^{(\pm)}$in $\operatorname{End}(L(\lambda))$, i.e., $S_{h \pm} \in \operatorname{End}(L(\lambda)) \otimes \operatorname{End}\left(\mathbb{C}^{n}\right)$.

Representations of quantum group from Stokes matrices

Theorem (Xu)

For any fixed $h \in \mathbb{C}^{*}$ and $u \in \mathfrak{h}_{\text {reg }}$, the map (with $q=e^{\pi i h}$)

$$
\mathcal{S}_{q}(u): U_{q}\left(\mathfrak{g l}_{n}\right) \rightarrow \operatorname{End}(L(\lambda)) ; e_{i} \mapsto S_{h+}(u)_{i, i+1}, f_{i} \mapsto S_{h-}(u)_{i+1, i}
$$

defines a representation of the Drinfeld-Jimbo quantum group $U_{q}\left(\mathfrak{g l}_{n}\right)$ on the vector space $L(\lambda)$. Here $U_{q}\left(\mathfrak{g l}_{n}\right)$ is an associative algebra with generators $q^{\pi \sqrt{-1} h_{i}}, e_{j}, f_{j}, 1 \leq j \leq n-1,1 \leq i \leq n$ and:

- for each $1 \leq i \leq n, 1 \leq j \leq n-1$,

$$
q^{h_{i}} e_{j} q^{-h_{i}}=q^{\delta_{i j}} q^{-\delta_{i, j+1}} e_{j}, \quad q^{h_{i}} f_{j} q^{-h_{i}}=q^{-\delta_{i j}} q^{\delta_{i, j+1}} f_{j}
$$

- for each $1 \leq i, j \leq n-1$,

$$
\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{q^{h_{i}-h_{i+1}}-q^{-h_{i}+h_{i+1}}}{q-q^{-1}} ;
$$

- for $|i-j|=1$,

$$
\begin{aligned}
& e_{i}^{2} e_{j}-\left(q+q^{-1}\right) e_{i} e_{j} e_{i}+e_{j} e_{i}^{2}=0 \\
& f_{i}^{2} f_{j}-\left(q+q^{-1}\right) f_{i} f_{j} f_{i}+f_{j} f_{i}^{2}=0
\end{aligned}
$$

and for $|i-j| \neq 1$. $\left[e_{i}, e_{i}\right]=0=\left[f_{i}, f_{i}\right]$.

WKB analysis and crystals

- WKB analysis: $\frac{1}{h^{2}} \frac{d^{2} \psi}{d z^{2}}-V \psi=0$ (Wentzel-Kramers-Brillouin).
- The algebraic characterization of the $h \rightarrow-i \infty$ asymptotics of $S_{h \pm}(u) \in \operatorname{End}(L(\lambda)) \otimes \operatorname{End}\left(\mathbb{C}^{n}\right)$ of $\frac{d F}{d z}=h\left(\frac{u}{z^{2}}+\frac{T}{z}\right) \cdot F$.

Conjecture (Xu, proved in a special case)

For any $u \in \mathfrak{h}_{\text {reg }}$, there exists a "canonical" basis $\left\{v_{I}(u)\right\}$ of $L(\lambda)$, operators $\tilde{e}_{k}(u)$ and $\tilde{f}_{k}(u)$ for $k=1, \ldots, n-1$ such that there exists constants c, c^{\prime}

$$
\begin{aligned}
& \lim _{q=e^{\pi i h} \rightarrow 0} q^{c} s_{k, k+1}^{(+)}(u) \cdot v_{I}(u)=\tilde{e}_{k}\left(v_{I}(u)\right), \\
& \lim _{q=e^{\pi i h} \rightarrow 0} q^{c^{\prime}} s_{k+1, k}^{(-)}(u) \cdot v_{I}(u)=\tilde{f}_{k}\left(v_{I}(u)\right) .
\end{aligned}
$$

Furthermore, the datum $\left(\left\{v_{I}(u)\right\}, \tilde{e}_{k}(u), \tilde{f}_{k}(u)\right)$ is a $\mathfrak{g l}_{n}-$ crystal.

- Crystal limit $q \rightarrow 0$ in $U_{q}\left(\mathfrak{g l}_{n}\right)$. - $\left\{v_{I}(u)\right\}$ eigenbasis of the shfit of argument subalgebra (Feigin-Frenkél-Rybnikov)

Part II

The semiclassical setting: WKB approximation of Stokes matrices and cluster algebras

The geometry in the WKB approximation

- WKB analysis: $\frac{1}{\hbar^{2}} \frac{d^{2} \psi}{d z^{2}}-V(z) \psi=0$. The $\hbar \rightarrow 0$ hehavior is related to the Stokes graphs on z-plane determined by $V(x)$. (many viewpoints: Voros, Delabaere-Dillinger-Pham,
Gaiotto-Moore-Neitzke, Iwaki-Nakanishi, Bridgeland-Smith, Aoki-Honda-Kawai- Koike-Nishikawa-Sasaki-Shudo-Takei ...)
- Set ε a small real parameter, consider $\varepsilon \frac{d F}{d z}=\left(\frac{u}{z^{2}}+\frac{A}{z}\right) F$.
- Problem: between the asymptotics of $S(u, A ; \varepsilon)$ as $\varepsilon \rightarrow 0$ and the geometry of the spectral curve

$$
\operatorname{det}\left[\lambda-\left(\frac{u}{z^{2}}+\frac{A}{z}\right)\right]=0
$$

Example (2 by 2 case)

$S(A, u ; \varepsilon)=\left(\begin{array}{cc}e^{\frac{t_{1}}{\varepsilon}} & \frac{a\left(\frac{i\left(u_{2}-u_{1}\right)}{\varepsilon}\right)^{\frac{t_{1}-t_{2}}{2 \pi i \varepsilon}}}{\Gamma\left(1-\frac{\lambda_{1}-t_{1}}{2 \pi i \varepsilon}\right) \Gamma\left(1-\frac{\lambda_{2}-t_{1}}{2 \pi i}\right)}\end{array}\right) \sim\left(\begin{array}{cc}e^{\frac{t_{1}}{\varepsilon}} & e^{\frac{\max \left(\lambda_{1}, \lambda_{2}\right)}{\varepsilon}} \\ 0 & e^{\frac{t_{2}}{\varepsilon}}\end{array}\right)$

A fake analysis

- solutions of $\varepsilon \frac{d F}{d z}=\left(\frac{u}{z^{2}}+\frac{A}{z}\right) F$ have the WKB type expansion,

$$
\begin{equation*}
F(z, \varepsilon) \sim e^{\frac{\omega(z)}{\varepsilon}}\left(v(z)+\sum \phi_{k} \varepsilon^{k}\right), \quad \text { as } \quad \varepsilon \rightarrow 0 \tag{1}
\end{equation*}
$$

where $\omega(z)=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right)$ is a diagonal matrix, and $v(z)$ is a $n \times n$ matrix with columns v_{k}.

- Leading asymptotics: $d \omega_{k} / d z$ and $v_{k}(z)$ satisfy

$$
\frac{d \omega_{k}}{d z} \cdot v_{k}(z)=\left(\frac{u}{z^{2}}+\frac{A}{z}\right) \cdot v_{k}(z)
$$

i.e., $\omega(z)=\operatorname{diag}\left(\int_{p_{1}}^{z} \lambda d t, \ldots ., \int_{p_{n}}^{z} \lambda d t\right)$.

- Stokes phenomenon takes place in the asymptotics $\varepsilon \rightarrow 0$ in a way that the approximation in (1) is not uniformly valid w.r.t z around 0 . Then the asymptotics of Stokes matrices as $\varepsilon \rightarrow 0$ should be encoded by certain periods on the spectral curve.

Main conjecture (semiclassical case)

- A coordinate chart on the space of upper triangular matrices from cluster algebra theory: $\left\{\Delta_{i}^{(j)}\right\}_{1 \leq i \leq j \leq n}$ the minor formed by intersecting columns $i-j+1$ to i and the first j rows.
- Spectral curve $\Gamma(u, A)$ of genus $\frac{(n-1)(n-2)}{2}$

$$
\operatorname{det}\left[\lambda-\left(\frac{u}{z^{2}}+\frac{A}{z}\right)\right]=0
$$

Conjecture (Alekseev-X-Zhou, proved in a special case)

For generic u and A, there exists a canonical set of cycles $\left\{C_{i}^{(k)}\right\}_{1 \leq i \leq k \leq n}$ on $\Gamma(u, A)$ such that

$$
\lim _{\varepsilon \rightarrow 0}\left(\varepsilon \log \left|\Delta_{i}^{(k)}(S(A, u, \varepsilon))\right|\right)=\int_{C_{i}^{(k)}(u, A)} \omega
$$

- analytic difficult (left); - the discrete choice of cycles (right).
- K. Takasaki, Dual isomonodromic problem, Whitham equation

Soliton solutions

- From the representation of $U_{q}\left(\mathfrak{g l}_{n}\right)$ at roots of unity

Conjecture

The equation $\frac{d F}{d z}=\left(\frac{u}{z^{2}}+\frac{A}{z}\right) F$ has a soliton solution of the form

$$
F(z)=\left(1+H_{1} z^{-1}+\cdots+H_{m} z^{-m}\right) \cdot e^{-u / z} z^{[A]}
$$

if and only if the set of periods $\left\{\int_{C_{i}^{(k)}} \omega\right\}_{1 \leq k \leq n}$ constitutes a Gelfand-Tsetlin pattern, i.e.,

$$
\int_{C_{i}^{(k)}} \omega-\int_{C_{i-1}^{(k+1)}} \omega \in \mathbb{Z}_{+}, \quad \int_{C_{i}^{(k+1)}} \omega-\int_{C_{i}^{(k)}} \omega \in \mathbb{Z}_{+}
$$

- The name of soliton is after Jimbo-Miwa-Ueno.

Part III

The technical tool: expression of Stokes matrices via the asymptotics of isomonodromy deformation equations

Isomonodromy deformation equations

- Jimbo-Miwa-Môri-Sato, Jimbo-Miwa-Ueno ...

Set $u=\operatorname{diag}\left(u_{1}, \ldots, u_{n}\right)$. The system of equations for $F(z, u) \in G L(n)$ is compatible

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial z}=\left(\frac{u}{z^{2}}+\frac{A(u)}{z}\right) F \\
\frac{\partial F}{\partial u_{i}}=\left(\frac{E_{i i}}{z}+V_{i}(u)\right) F
\end{array}\right.
$$

if and only if

$$
\frac{\partial A(u)}{\partial u_{i}}=\left[A(u), V_{i}(u)\right], \text { for all } i=1, \ldots, n
$$

Here V_{i} is off-diagonal determined by $\left[u, V_{i}\right]=\left[E_{i i}, A(u)\right]$.

- Isomonodromy: $S_{ \pm}(u, A(u))$ is locally constant.
- Inverse scattering: Stokes matrices are scattering data.
- As $n=3$, Painlevé VI function, connection formula (Jimbo).

Asymptotic solution to Riemann-Hilbert problem

Scattering : $(u, A(u)) \mapsto S_{+}(u, A(u))=\left(\begin{array}{cc}e^{t_{1}} & \frac{a\left(\left(u_{2}-u_{1}\right)\right)^{t_{1}-t_{2}}}{\Gamma\left(1-\lambda_{1}+t_{1}\right) \Gamma\left(1-\lambda_{2}+t_{1}\right)} \\ 0 & e^{t_{2}}\end{array}\right)$.

Theorem (Xu)

The sub-diagonals of $S_{+}(u, A(u))$ are
$S_{k, k+1}=\sum_{i=1}^{k} \frac{\prod_{l=1, l \neq i}^{k} \Gamma\left(\lambda_{l}^{(k)}-\lambda_{i}^{(k)}\right)}{\prod_{l=1}^{k+1} \Gamma\left(\lambda_{l}^{(k+1)}-\lambda_{i}^{(k)}\right)} \frac{\prod_{l=1, l \neq i}^{k} \Gamma\left(\lambda_{l}^{(k)}-\lambda_{i}^{(k)}\right)}{\prod_{l=1}^{k-1} \Gamma\left(\lambda_{l}^{(k-1)}-\lambda_{i}^{(k)}\right)} \cdot m_{i}^{(k)}, k=1, \ldots, n-1$
where $\left\{\lambda_{i}^{(k)}\right\}_{i=1, \ldots, k}$ are the eigenvalues of the k-th principal submatrix of $A_{\infty} \in \mathfrak{g l}_{n}$, and A_{∞} is such that

$$
A(u)=\left(\prod_{k}\left(\frac{u_{k}}{u_{k+1}}\right)^{\frac{\delta_{k}\left(A_{\infty}\right)}{2 \pi \iota}}\right)^{-1} \cdot A_{\infty} \cdot\left(\prod_{k}\left(\frac{u_{k}}{u_{k+1}}\right)^{\frac{\delta_{k}\left(A_{\infty}\right)}{2 \pi \iota}}\right)+O\left(\frac{1}{u_{2}-u_{1}}\right)
$$

as $\frac{u_{k}-u_{k-1}}{u_{k+1}-u_{k}} \rightarrow 0$ for all $k=1, \ldots, n-1$. The other entries are given by explicit algebraic combinations of the sub-diagonal ones.

- Ry tho icomonodromy nronorty tho loadino torm civoc a

Proof of the second conjecture near a limiting point

- Fixing u_{1}, \ldots, u_{n-1}, let $u_{n} \rightarrow \infty$,

- As $u_{1} \ll \cdots \ll u_{n}$, set $\left\{V_{i}^{(k)}\right\}_{1 \leq i \leq k \leq n}$ the vanishing cycles.

Theorem (Alekseev-X-Zhou)

As u_{k} / u_{k+1} sufficiently small, the cycles $C_{i}^{(k)}=\sum_{j=1}^{i} V_{k-j}^{(k)}$ on $\Gamma(u, A)$ such that
$\lim _{\varepsilon \rightarrow 0}\left(\varepsilon \varepsilon_{u_{1} \ll \cdots \ll u_{n}}\left(\log \left|\Delta_{i}^{(k)}(S(A, u ; \varepsilon))\right|\right)\right)=\lim _{u_{1} \ll \cdots<u_{n}} \int_{C_{i}^{(k)}} \omega$

- Conjecture $\lim _{\varepsilon \rightarrow 0}\left(\varepsilon\left(\log \left|\Delta_{i}^{(k)}(S(A, u ; \varepsilon))\right|\right)\right)=\int_{C_{i}^{(k)}} \omega$.

Thank you very much!

