Quantum dilogarithm identities of infinite product and quantum affine algebras

Masaru Sugawara

Mathematical Institute, Tohoku University
Trends in Cluster Algebras 2022 September 22, 2022

Plan of this talk

(1) Introduction
(2) Quantum algebra $U_{q}(\mathfrak{g})$ and universal R-matrix
(3) Convex orders and construction of convex bases for quantum affine algebras
(4) Representing root vectors as q-commutator monomial
(5) Construction of quantum dilogarithm identities
(1) Introduction
(2) Quantum algebra $U_{q}(\mathfrak{g})$ and universal R-matrix
(3) Convex orders and construction of convex bases for quantum affine algebras
(4) Representing root vectors as q-commutator monomial
(5) Construction of quantum dilogarithm identities
$3 / 48$

Quantum dilogarithm

Quantum dilogarithm is the function

$$
\mathbb{E}(x):=\prod_{k=0}^{\infty} \frac{1}{1+q^{2 k+1} x} \quad \in \mathbb{Q}(q)[[x]]
$$

This is called 'dilogarithm' since $\mathbb{E}(x)=\exp \left(\operatorname{Li}_{2, q}(-q x)\right)$, where

$$
\operatorname{Li}_{2, q}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n\left(1-q^{n}\right)}
$$

and $\mathrm{Li}_{2, q}(x)$ degenerates to usual dilogarithm function:

$$
\lim _{q \rightarrow 1}(1-q) \operatorname{Li}_{2, q}(x)=\operatorname{Li}_{2}(x):=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}
$$

Quantum dilogarithm identities

It is well known that $\mathbb{E}(x)$ satisfies the following fundamental identity (especially called pentagon identity):

$$
\mathbb{E}\left(x_{1}\right) \mathbb{E}\left(x_{2}\right)=\mathbb{E}\left(x_{2}\right) \mathbb{E}\left(q^{-1} x_{1} x_{2}\right) \mathbb{E}\left(x_{1}\right),
$$

where x_{1}, x_{2} are indeterminate satisfying $x_{1} x_{2}=q^{2} x_{2} x_{1}$.

$$
\begin{aligned}
& y_{s}=s l_{0} \\
& (-1)=e \times p_{q} l \\
& =\exp _{a}() \\
& {\left[E_{1}, E_{2}\right]_{q} \mapsto 0 \quad\left[E_{V}, E_{1} I_{q} \longmapsto\left(1-q^{2}\right) e_{1} e_{\sim} \neq 0\right.} \\
& 5 / 48
\end{aligned}
$$

Relationship with cluster transformations

- The quantum dilogarithm $\mathbb{E}(x)$ appears in the quantization of cluster transformations by Fock-Goncharov (They denote $\mathbb{E}(x)$ as $\Psi_{q}(x)$) [FG].
- The definitive work of Kashaev-Nakanishi [KN] enabled us to construct (quantum) dilogarithm identities from periods of (quantum) cluster algebras.
- Thus the behavior of quantum dilogarithm identities of finite product are well understood.

Identities of infinite product

On the other hand, Dimofte, Gukov, Soibelman proposed several concrete quantum dilogarithm identities containing infinite product in a context of physics [DGS]:

$$
\begin{aligned}
\mathbf{U}_{2,-1} \mathbf{U}_{0,1}= & \left(\mathbf{U}_{0,1} \mathbf{U}_{2,1} \mathbf{U}_{4,1} \ldots\right) \\
& \times \mathbb{E}\left(-q x_{1}^{2}\right)^{-1} \mathbb{E}\left(-q^{-1} x_{1}^{2}\right)^{-1} \\
& \times\left(\ldots \mathbf{U}_{6,-1} \mathbf{U}_{4,-1} \mathbf{U}_{2,-1}\right), \quad\left(A_{1}^{(1)}\right)
\end{aligned}
$$

where $\mathbf{U}_{m, n}:=\mathbb{E}\left(q^{-m n} x_{1}^{m} x_{2}^{n}\right)$.

Identities of infinite product [DGS]

$$
\begin{aligned}
\mathbf{U}_{1,-1} \mathbf{U}_{1,0} \mathbf{U}_{0,1}= & \left(\mathbf{U}_{0,1} \mathbf{U}_{1,1} \mathbf{U}_{2,1} \mathbf{U}_{3,1} \ldots\right) \\
& \times \mathbf{U}_{1,0}^{2} \mathbb{E}\left(-q x_{1}^{x^{2}}\right)^{-1} \mathbb{E}\left(-q^{-1} x_{1}^{2}\right)^{-1} \\
& \times\left(\ldots \mathbf{U}_{3,-1} \mathbf{U}_{2,-1} \mathbf{U}_{1,-1}\right), \quad\left(A_{2}^{(1)}\right) \\
\mathbf{U}_{1,-1}^{2} \mathbf{U}_{0,1}^{2}= & \left(\mathbf{U}_{0,1}^{2} \mathbf{U}_{1,1}^{2} \mathbf{U}_{2,1}^{2} \mathbf{U}_{3,1}^{2} \ldots\right) \\
& \times \mathbf{U}_{1,0}^{4} \mathbb{E}\left(-q x_{1}^{2}\right)^{-1} \mathbb{E}\left(-q^{-1} x_{1}^{2}\right)^{-1} \\
& \times\left(\ldots \mathbf{U}_{3,-1}^{2} \mathbf{U}_{2,-1}^{2} \mathbf{U}_{1,-1}^{2}\right), \quad\left(A_{3}^{(1)}\right) \\
\mathbf{U}_{1,-2} \mathbf{U}_{0,1}^{4}= & \left(\mathbf{U}_{0,1}^{4} \mathbf{U}_{1,2} \mathbf{U}_{1,1}^{4} \mathbf{U}_{3,2} \mathbf{U}_{2,1}^{4} \ldots\right) \\
& \times \mathbf{U}_{1,0}^{6} \mathbb{E}\left(-q x_{1}^{2}\right)^{-1} \mathbb{E}\left(-q^{-1} x_{1}^{2}\right)^{-1} \\
& \times\left(\ldots \mathbf{U}_{2,-1}^{4} \mathbf{U}_{3,-2} \mathbf{U}_{1,-1}^{4} \mathbf{U}_{1,-2}\right) \mathbf{8}\left(D_{\mathbf{8}}^{(1)}\right)
\end{aligned}
$$

The aim of this talk

- We introduce another method to construct quantum dilogarithm identities using the product formula for the universal R-matrix of quantum affine algebra.
- Our result is that the four identities can be obtained mathematically by our new method.

Outline of the method

- Use product formula for universal R-matrix \mathcal{R} [Ito] the product presentation depends on convex orders on positive roots, $\quad \exp (x)=\Pi\left(\left(q-q^{-1}\right) \times\right)$ each factor is in fact quantum dilogarithm (except for imaginary roots!).
By the uniqueness of \mathcal{R} comparing different convexicial orders we have nontrivial identity.
- Appropriate degeneration process of the identity kills infinitely many factors, and eventually we obtain nontrivial identities of the form finite product $=$ infinite product.
(2) Quantum algebra $U_{q}(\mathfrak{g})$ and universal R-matrix

Convex orders and construction of convex bases for quantum affine algebras

Representing root vectors as q-commutator monomial

Construction of quantum dilogarithm identities
$11 / 48$

Notation

- \mathfrak{g} : symmetrizable Kac-Moody Lie algebra
- $A=\left(a_{i j}\right) \in \operatorname{Mat}(n, \mathbb{Z})$: Cartan matrix of \mathfrak{g}
- $\mathfrak{h} \subset \mathfrak{g}$: Carton subalgebra
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathfrak{h}^{*}$: simple roots
- $\check{\alpha}_{1}, \check{\alpha}_{2}, \ldots, \check{\alpha}_{n} \in \mathfrak{h}$: simple coroots
- $(\cdot, \cdot): \mathfrak{h}^{*} \otimes \mathfrak{h}^{*} \rightarrow \mathbb{C}$: invariant bilinear form
- $W:=\left\langle s_{i}\right\rangle \subset \mathrm{GL}\left(\mathfrak{h}^{*}\right)$: Weyl group
s_{i} : simple reflection w.r.t. α_{i}
Kan's textbook
- $\Delta \subset \mathfrak{h}^{*}:$ root system of \mathfrak{g}

Quantum algebra $U_{q}(\mathfrak{g})$

Definition

$U_{q}(\mathfrak{g})$ is the $\mathbb{Q}(q)$-algebra defined by
Generators : $E_{i}, F_{i}, K_{\lambda} \quad(i=1,2, \ldots, n, \lambda \in P)$. Relations : $K_{\lambda} K_{\mu}=K_{\lambda+\mu}, \quad K_{0}=1 \quad(\lambda, \mu \in P) ;$

$$
\begin{aligned}
& K_{\lambda} E_{i} K_{\lambda}^{-1}=q^{\left(\lambda, \alpha_{i}\right)} E_{i} \\
& K_{\lambda} F_{i} K_{\lambda}^{-1}=q^{-\left(\lambda, \alpha_{i}\right)} F_{i} \quad(\lambda \in P, i=1,2, \ldots, n) ; \\
& {\left[E_{i}, F_{j}\right]=\delta_{i j} \frac{K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}} \quad(i, j=1,2, \ldots, n) ;}
\end{aligned}
$$

Quantum Serre relations;
where $P:=\left\{\lambda \in \mathfrak{h}^{*} \mid \lambda\left(\check{\alpha}_{i}\right) \in \mathbb{Z}(i=1,2, \ldots, n)\right\} .13 / 48$

Quantum algebra $U_{q}(\mathfrak{g})$

Definition

Quantum Serre relations:

$$
\begin{aligned}
& \sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} E_{i}^{1-a_{i j}-k} E_{j} E_{i}^{k}=0 \\
& \sum_{k=0}^{1-a_{i j}}(-1)^{k}\left[\begin{array}{c}
1-a_{i j} \\
k
\end{array}\right]_{q_{i}} F_{i}^{1-a_{i j}-k} F_{j} F_{i}^{k}=0 \quad(i \neq j)
\end{aligned}
$$

where $q_{i}:=q^{\frac{1}{2}\left(\alpha_{i}, \alpha_{i}\right)},[n]_{q}:=\frac{q^{n}-q^{-n}}{q-q^{-1}}$,
$[n]_{q}!:=[1]_{q}[2]_{q} \ldots[n]_{q},\left[\begin{array}{c}m \\ k\end{array}\right]_{q}:=\frac{[m]_{q}!}{[k]_{q}![m-k]_{q}!}$.

Triangular decomposition

We set the following $\mathbb{Q}(q)$-subalgebras of $U_{q}(\mathfrak{g})$.

$$
\begin{aligned}
U_{q}^{+} & :=\left\langle E_{i}\right\rangle, \quad U_{q}^{0}:=\left\langle K_{\lambda}\right\rangle, \quad U_{q}^{-}:=\left\langle F_{i}\right\rangle, \\
U_{q}^{\geq 0} & :=\left\langle E_{i}, K_{\lambda}\right\rangle, \quad U_{q}^{\leq 0}:=\left\langle F_{i}, K_{\lambda}\right\rangle .
\end{aligned}
$$

Proposition (Triangular decomposition)

$$
U_{q}^{-} \otimes U_{q}^{0} \otimes U_{q}^{+} \cong U_{q}(\mathfrak{g}), \quad x \otimes y \otimes z \mapsto x y z
$$

15 / 48

Hopf algebra

Definition

Hopf algebra is a k-algebra H equipped with coproduct $\Delta: H \rightarrow H \otimes H$, counit $\varepsilon: H \rightarrow k$, and antipode $S: H \rightarrow H$ satisfying

- $(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta$
- $(\varepsilon \otimes \mathrm{id}) \circ \Delta=\iota=(\mathrm{id} \otimes \varepsilon) \circ \Delta$
- $\mu \circ(S \otimes \mathrm{id}) \circ \Delta=u \circ \varepsilon=\mu \circ(\mathrm{id} \otimes S) \circ \Delta$.
where $\iota: H \cong k \otimes H \cong H \otimes k$ natural isomorphism, $\mu: H \otimes H \rightarrow H$ is the multiplication, $u: k \rightarrow H, 1_{k} \mapsto 1_{H}$ is the unit map.

Hopf algebra structure

$U_{q}(\mathfrak{g})$ has a structure of Hopf algebra defined by

$$
\begin{aligned}
\Delta\left(E_{i}\right) & :=E_{i} \otimes 1+K_{i} \otimes E_{i}, \\
\Delta\left(F_{i}\right) & :=F_{i} \otimes K_{i}^{-1}+1 \otimes F_{i}, \\
\Delta\left(K_{\lambda}\right) & :=K_{\lambda} \otimes K_{\lambda}, \\
\varepsilon\left(E_{i}\right) & :=0, \quad \varepsilon\left(F_{i}\right)=0, \quad \varepsilon\left(K_{\lambda}\right):=1, \\
S\left(E_{i}\right) & :=-K_{i}^{-1} E_{i}, \quad S\left(F_{i}\right):=-F_{i} K_{i}, \quad S\left(K_{\lambda}\right):=K_{\lambda}^{-1} \\
& (i=1,2, \ldots, n ; \lambda \in P) .
\end{aligned}
$$

17 / 48

Universal R-matrix

Definition

For Hopf algebra H, an invertible element $\mathcal{R} \in H \otimes H$ is called universal R-matrix if it satisfies

$$
\begin{aligned}
\Delta^{\mathrm{op}}(x) & =\mathcal{R} \Delta(x) \mathcal{R}^{-1} \quad(x \in H), \\
(\Delta \otimes \mathrm{id})(\mathcal{R}) & =\mathcal{R}_{13} \mathcal{R}_{23} \quad \in H \otimes H \otimes H, \\
(\mathrm{id} \otimes \Delta)(\mathcal{R}) & =\mathcal{R}_{13} \mathcal{R}_{12} \quad \in H \otimes H \otimes H,
\end{aligned}
$$

where $\mathcal{R}_{12}:=\sum_{i} a_{i} \otimes b_{i} \otimes 1$ and so on when $\mathcal{R}=\sum_{i} a_{i} \otimes b_{i}$.

Hopf pairing

There exists unique non-degenerate bilinear form $(\cdot \mid \cdot): U_{q}^{\geq 0} \otimes U_{q}^{\leq 0} \rightarrow \mathbb{Q}(q)$ having the following properties, which is called Hopf pairing.

$$
\begin{aligned}
\left(x \mid y_{1} y_{2}\right) & =\left(\Delta(x) \mid y_{1} \otimes y_{2}\right) \quad\left(x \in U_{q}^{\geq 0}, y_{1}, y_{2} \in U_{q}^{\leq 0}\right) \\
\left(x_{1} x_{2} \mid y\right) & =\left(x_{2} \otimes x_{1} \mid \Delta(y)\right) \quad\left(x_{1}, x_{2} \in U_{q}^{\geq 0}, y \in U_{q}^{\leq 0}\right) \\
\left(K_{\mu} \mid K_{\nu}\right) & =q^{-(\mu, \nu)} \quad(\mu, \nu \in P) \\
\left(E_{i} \mid K_{\mu}\right) & =\left(K_{\mu} \mid F_{i}\right)=0 \quad(\mu \in P, i=1,2, \ldots, n) \\
\left(E_{i} \mid F_{j}\right) & =\frac{\delta_{i j}}{q_{i}^{-1}-q_{i}} \quad(i, j=1,2, \ldots, n)
\end{aligned}
$$

where $\left(x_{1} \otimes x_{2} \mid y_{1} \otimes y_{2}\right):=\left(x_{1} \mid y_{1}\right)\left(x_{2} \mid y_{2}\right)$.

Construction of universal R-matrix

Theorem (Drinfel'd, Tanisaki)

$$
\mathcal{R}=\Theta\left(q^{-T} \underset{\phi}{\in} \in U_{q}(\mathfrak{g}) \widehat{\otimes} U_{q}(\mathfrak{g})\right.
$$

is the universal R-matrix of $U_{q}(\mathfrak{g})$, where $T \in \mathfrak{h} \otimes \mathfrak{h}$ is the canonical element of invariant bilinear form (\cdot, \cdot), and $\Theta \in U_{q}^{+} \widehat{\otimes} U_{q}^{-}$is the canonical element of Hopf paring $\left.(\cdot \mid \cdot)\right|_{U_{q}^{+} \otimes U_{q}^{-}}$.

Convex bases

It is known that Θ can be more explicitly described using convex basis.

Definition (Convex bases)

Let $U=U_{q}(\mathfrak{g}), \Lambda \subset U, \leq$: total order on Λ.
For $\Sigma \subset \Lambda$, let
$\mathscr{E}_{<}(\Sigma):=\{$ increasing monomial consists of $\Sigma\}$.
$\mathscr{E}_{<}(\Lambda)$ is called convex basis of U when

- $\mathscr{E}_{<}(\Lambda)$ is a $\mathbb{Q}(q)$-basis of U
- For every interval $I \subset \Lambda, \mathscr{E}_{<}(I)$ forms a $\mathbb{Q}(q)$-basis of $U_{I}:=\langle I\rangle \subset U$.
Inverval is a subset of the form $\Lambda,(x, *),[x, *)$, $(*, y),(*, y],(x, y),[x, y),(x, y],[x, y](x, y \in \Lambda)_{\mathbf{2 1}}$

Braid group action on $U_{q}(\mathfrak{g})$

- Associated with Weyl group W, braid group \mathcal{B} is the group whose defining relations are same with W 's except for $s_{i}^{2}=1$.
\rightsquigarrow canonical projection $p: \mathcal{B} \rightarrow W$
- $s_{i_{1}} s_{i_{2}} \ldots s_{i_{m}}=s_{j_{1}}^{\prime} s_{j_{2}}^{\prime} \ldots s_{j_{m}}^{\prime} \in W$ are both reduced expressions in W
\Rightarrow both side coincide in \mathcal{B}.
\rightsquigarrow Taking reduced expression defines natural map
$W \hookrightarrow \mathcal{B}$ (*not* group hom)

Braid group action on $U_{q}(\mathfrak{g})$

Theorem (Lustig)

There exists unique $T_{i} \in \operatorname{Aut} U_{q}(\mathfrak{g})$ satisfying

$$
\begin{aligned}
& T_{i}\left(E_{i}\right)=-F_{i} K_{i}, \quad T_{i}\left(F_{i}\right)=-K_{i}^{-1} E_{i}, \quad T_{i}\left(K_{\lambda}\right)=K_{s_{i}(\lambda)} \\
& T_{i}\left(E_{j}\right)=\frac{1}{\left[-a_{i j}\right]_{q_{i}}!} \sum_{k=0}^{-a_{i j}}(-1)^{k} q_{i}^{-k}\left[\begin{array}{c}
-a_{i j} \\
k
\end{array}\right]_{q_{i}} E_{i}^{-a_{i j}-k} E_{j} E_{i}^{k}, \\
& T_{i}\left(F_{j}\right)=\frac{1}{\left[-a_{i j}\right]_{q_{i}}!} \sum_{k=0}^{-a_{i j}}(-1)^{k} q_{i}^{k}\left[\begin{array}{c}
-a_{i j} \\
k
\end{array}\right]_{q_{i}} F_{i}^{k} F_{j} F_{i}^{-a_{i j}-k}(j \neq i)
\end{aligned}
$$

There exists unique group homomorphism $T: \mathcal{B} \rightarrow \operatorname{Aut}\left(U_{q}(\mathfrak{g})\right)$ such that $T\left(s_{i}\right)=T_{i}$.

Construction of convex bases $(\operatorname{dim} \mathfrak{g}<\infty)$

- When \mathfrak{g} is simple Lie algebra, $|W|<\infty$. The longest element $w_{\circ} \in W$ exists.
- Choose a reduced expression $w_{\circ}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{N}}$, and set $\beta_{k}:=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)$.
Then $\Delta_{+}=\left\{\beta_{k} \mid k=1,2, \ldots, N\right\}$.
- $\beta_{i} \leq \beta_{j} \Leftrightarrow i \leq j$ defines a total order on Δ_{+}.
- Set root vectors $E_{\leq, \beta_{k}}:=T_{i_{1}} T_{i_{2}} \ldots T_{i_{k-1}}\left(E_{i_{k}}\right)$, $\Lambda:=\left\{E_{\leq, \beta_{k}} \mid k=1,2, \ldots, N\right\}$, then $\mathscr{E}_{<}(\Lambda)$ is a convex basis of U_{q}^{+}.
- Using Chevalley involution $\Omega: U_{q}^{+} \rightarrow U_{q}^{-}$, we can construct convex basis for U_{q}^{-}, and eventually for whole $U_{q}(\mathfrak{g})$.

Convex bases for quantum affine algebra

When \mathfrak{g} is of affine type, several problems appear!

- $\operatorname{dim} \mathfrak{g}=|\Delta|=|W|=\infty$. No longest element How to choose presentation $\alpha=w\left(\alpha_{i}\right)$ for $\alpha \in \Delta_{+}^{\text {re }}$?
- Existence of imaginary roots

How to construct root vectors for imaginary roots?
These problems has been solved by Beck $[\mathrm{B}]$ and Ito [Ito2].

25 / 48

Quantum algebra $U_{q}(\mathfrak{g})$ and universal R-matrix

3 Convex orders and construction of convex bases for quantum affine algebras

Representing root vectors as q-commutator monomial

Construction of quantum dilogarithm identities
$26 / 48$

Convex orders

Definition ([Itol)

A total order \leq on $B \subset \Delta_{+}$is called convex if

- For $\beta, \gamma \in \Delta_{+}^{\mathrm{re}} \cap B$,

$$
\beta<\gamma, \beta+\gamma \in B \Rightarrow \beta<\beta+\gamma<\gamma
$$

- For $\beta \in B, \gamma \in \Delta_{+} \backslash B, \beta+\gamma \in B \Rightarrow \beta<\beta+\gamma$.

Ito classified convex orders on Δ_{+}when \mathfrak{g} is untwisted affine algebra [lto].

Construction of general convex order

- When \mathfrak{g} is of type $X_{\ell}^{(1)}, \quad x=A \sim G$ choose $w \in W$ (finite Weyl group of type X_{ℓ}). $\rightsquigarrow \Delta_{+}=\Delta(w,-) \amalg \Delta_{+}^{\mathrm{im}} \amalg \Delta(w,+)$

$$
\Delta(w, \pm):=\left\{m \delta+w \varepsilon \mid m \in \mathbb{Z}_{\geq 0}, \varepsilon \in \grave{\Delta}_{ \pm}\right\} \cap \Delta_{+}
$$

- Convex orders on $\Delta(w, \pm)$ are classified, whose ordinal number is $n \omega(n \leq \ell)$ (n-row type).
- Choose any total order on Δ_{+}^{im}.
- Concatenating these orders yields a convex order on whole Δ_{+}.

Theorem (Ito, 2001)

Any convex order on Δ_{+}can be constructed by above procedure.

Example of convex order, type $A_{1}^{(1)}$

$$
g=\hat{v} \hat{l}_{v}
$$

$$
\Delta_{+}=\left\{m \delta-\alpha_{1} \mid m \in \mathbb{Z}_{\geq 1}\right\} \amalg\left\{m \delta \mid m \in \mathbb{Z}_{\geq 1}\right\}
$$

$$
\amalg\left\{m \delta+\alpha_{1} \mid m \in \mathbb{Z}_{\geq 0}\right\} . \quad \alpha_{1}<\alpha_{1}+\alpha_{2}<\alpha_{\sim}
$$

where $\delta:=\alpha_{0}+\alpha_{1}$ is the null root.

$$
\begin{aligned}
& \delta-\alpha_{1}<2 \delta-\alpha_{1}<3 \delta-\alpha_{1}<\ldots \\
& \downarrow \\
& <\delta<2 \delta<3 \delta<4 \delta<\ldots \quad \alpha_{2}<\alpha_{1}+2 .<\alpha, \\
& \ldots<3 \delta+\alpha_{1}<2 \delta+\alpha_{1}<\delta+\alpha_{1}<\alpha_{1},
\end{aligned}
$$

Example of convex order, type $A_{2}^{(1)}$

$$
1-r_{0 w} r_{y y} \alpha_{0}<\alpha_{0}+\alpha_{1}<\cdots \quad y=\sqrt{\varrho_{3}}
$$

$$
\Delta_{+}=\left\{m \delta-\varepsilon|m| \in \mathbb{Z}_{\geq 1}, \varepsilon=\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\}
$$

$$
\amalg \Delta_{+}^{\mathrm{im}} \amalg\left\{m \delta+\left.\varepsilon\right|_{m} \in \mathbb{Z}_{\geq 0}, \varepsilon=\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right\} .
$$ a application of fundamental transf.

Set $w=s_{1}$. This is a convex order of 2-row type.
lost info of Ind row
$-\gamma-\alpha_{1}-\alpha_{2}<\delta-\alpha_{2}<2 \delta-\alpha_{1}-\alpha_{2}<2 \delta-\alpha_{2}<\ldots$

$$
<\alpha_{1}<\delta+\alpha_{1}<2 \delta+\alpha_{1}<3 \delta+\alpha_{1}<\ldots
$$

$$
<\delta<2 \delta<3 \delta<4 \delta<\ldots
$$

$$
\ldots<3 \delta-\alpha_{1}<2 \delta-\alpha_{1}<\delta-\alpha_{1}
$$

$$
\ldots<\delta+\alpha_{1}+\alpha_{2}<\delta+\alpha_{2}<\alpha_{1}+\alpha_{2}<\alpha_{2}
$$

where $\delta:=\alpha_{0}+\alpha_{1}+\alpha_{2}$.

Construction of real root vectors (outline)

Convex order determines a presentation $\alpha=w\left(\alpha_{i}\right)$ for each positive real root $\alpha \in \Delta_{+}^{\text {re }}$
\Rightarrow Define $E_{\leq, \alpha}:=T_{w}\left(E_{i}\right)$

Example

When $\mathfrak{g}=\widehat{\mathfrak{s l}_{3}}$: type $A_{2}^{(1)}$ and using the convex order of previous page, the root vector for $m \delta-\alpha_{1}-\alpha_{2}(m \geq 1)$ is

$$
E_{\leq, m \delta-\alpha_{1}-\alpha_{2}}=\overbrace{T_{0} T_{1} T_{2} T_{0} T_{1} T_{2} \ldots}^{2(m-1)}\left(E_{k}\right)(k=1-m \bmod 3) .
$$

$31 / 48$

q-bracket

- There is natural weight space decomposition

$$
U_{q}(\mathfrak{g})=\bigoplus_{\mu \in \mathfrak{h}^{*}} U_{\mu}
$$

where for each $\mu \in \mathfrak{h}^{*}$,

$$
U_{\mu}:=\left\{x \in U_{q}(\mathfrak{g}) \mid K_{\lambda} x K_{\lambda}^{-1}=q^{(\lambda, \mu)} x \quad(\forall \lambda \in P)\right\}
$$

- For $x \in U_{\mu}, y \in U_{\nu}\left(\mu, \nu \in \mathfrak{h}^{*}\right)$, we define q-bracket

$$
[x, y]_{q}:=x y-q^{(\mu, \nu)} y x
$$

Construction of imaginary root vectors

Imaginary root vectors $I_{i, m}$ associated with $m \delta \in \Delta_{+}^{\mathrm{im}}$ is constructed as following procedure. $\left(1 \leq i \leq \ell, m \in \mathbb{Z}_{\geq 1}\right)$.

- Let $\mathcal{E}_{m \delta-\alpha_{i}}:=T_{\varepsilon_{i}}^{m} T_{i}^{-1}\left(E_{i}\right)$. $T_{\varepsilon_{i}}$: Action of translation w.r.t. fundamental coweight ε_{i}.
(Constructed by extended braid group action [B])
- Let $\varphi_{i, m}:=\left[\mathcal{E}_{m \delta-\alpha_{i}}, E_{i}\right]_{q}$, and Beck $\varphi_{i}(z):=\left(q_{i}-q_{i}^{-1}\right) \sum_{m \geq 1} \varphi_{i, m} z^{m} \in U_{q}^{+}[[z]]$.
- Set $I_{i}(z):=\log \left(1+\varphi_{i}(z)\right)$, Then $I_{i, m} \in U_{q}^{+}$are determined by $I_{i}(z)=\left(q_{i}-q_{i}^{-1}\right) \sum_{m \geq 1} I_{i, m} z^{m}$.
- Each $I_{i, m}$ is a polynomial of $\varphi_{i, m}$

Convex bases for quantum affine algebra

Theorem ([Ito2])

Choose a convex order on Δ_{+}, and set

$$
\begin{aligned}
& \Lambda:=\left\{E_{\leq, \alpha} \mid \alpha \in \Delta_{+}^{\mathrm{re}}\right\} \\
& \amalg\left\{T_{w}\left(I_{i, m}\right) \mid m \in \mathbb{Z}_{\geq 1}, i=1,2, \ldots, \ell\right\} .
\end{aligned}
$$

Using given convex order, we set a total order on Λ.
The ordering between $I_{i, m}$ is defined by

$$
I_{i, m} \leq I_{j, m^{\prime}} \Leftrightarrow\left(m \leq m^{\prime}\right) \text { or }\left(m=m^{\prime}, i \leq j\right)
$$

$\Rightarrow \mathscr{E}_{<}(\Lambda)$ is a convex basis of U_{q}^{+}, where
$w \in \dot{W}$ was determined by given convex order. $34 / 48$

Explicit product presentation of Θ

Theorem ([Ito2])

For any convex order \leq on Δ_{+},

$$
\Theta=\prod_{\alpha \in \Delta_{+}}^{>} \Theta_{\leq, \alpha} \quad \in U_{q}^{+} \widehat{\otimes} U_{q}^{-},
$$

where $\Pi^{>}$means $\alpha<\beta \Rightarrow \Theta_{\leq, \beta} \Theta_{\leq, \alpha}$. Each factor $\Theta_{\leq, \alpha}$ is written by root vectors:

$$
\Theta_{\leq, \alpha}=\mathbb{E}_{q_{\alpha}}\left(-\left(q_{\alpha}-q_{\alpha}^{-1}\right)^{2} E_{\leq, \alpha} \otimes F_{\leq, \alpha}\right) \quad\left(\alpha \in \Delta_{+}^{\mathrm{re}}\right),
$$

where $q_{\alpha}:=q^{\frac{1}{2}(\alpha, \alpha)}, F_{\leq, \alpha}:=\Omega\left(E_{\leq, \alpha}\right)$, and $\mathbb{E}_{q_{\alpha}}(x)$ means replacing $q \mapsto q_{\alpha}$

Explicit product presentation of Θ

$b_{i, j ; n}:=\operatorname{sgn}\left(a_{i j}\right)^{n} \frac{\left[a_{i j} n\right]_{q_{i}}}{n\left(q_{j}^{-1}-q_{j}\right)}, \quad \operatorname{sgn}(x):=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=0 . \\ -1 & x<0\end{array}\right.$.
Let $\left(c_{i, j ; n}\right)_{i, j=1}^{\ell} \in \operatorname{Mat}(\mathbb{Q}(q), \ell)$ denote the inverse matrix of $\left(b_{i, j ; n}\right)_{i, j=1}^{\ell}$ and $J_{i, n}:=\Omega\left(I_{i, n}\right)$.

$$
\begin{aligned}
S_{n} & :=\sum_{i, j \in \dot{I}} c_{j, i ; n} I_{i, n} \otimes J_{j, n} \quad \in U_{q}^{+} \otimes U_{q}^{-}, \\
\Theta_{\leq, n \delta} & :=\exp \left\{T_{w} \otimes T_{w}\left(S_{n}\right)\right\}
\end{aligned}
$$

Remark: $\Theta_{\leq, n \delta}$ itself is *not* quantum dilogarithm! 36 / 48
(2) Quantum algebra $U_{q}(\mathfrak{g})$ and universal R-matrix

Convex orders and construction of convex bases for quantum affine algebras
(4) Representing root vectors as q-commutator monomial Construction of quantum dilogarithm identities

q-commutator monomials

Definition ([S])

The elements in U_{q}^{+}which can be represented by (nonzero scalar multiple of) finitely many applications of q-bracket among the positive generators E_{i} are called q-commutator monomial.

We illustrate the manipulation of taking q-bracket as

$$
\stackrel{\times}{V}:=[X, Y]_{q} \quad\left(X, Y \in U_{q}(\mathfrak{g})\right),
$$

and abbreviate E_{i} as just i.
Example: $\left[\left[\left[E_{0}, E_{1}\right]_{q},\left[E_{0}, E_{2}\right]_{q}\right]_{q}, E_{1}\right]_{q}=\stackrel{010^{2}}{\underbrace{2}}$. 38 / 48

Root vectors are q-commutator monomial

Example of presentation of real root vectors:

$$
\overbrace{(m \geq 1) .}^{m-1}
$$

Theorem ([S])

Let \mathfrak{g} be untwisted affine Lie algebra of type $X_{\ell}^{(1)}$. Then for any convex order \leq on Δ_{+}, the real root vectors $E_{\leq, \alpha}$ $\left(\alpha \in \Delta_{+}^{\mathrm{re}}\right)$ and $T_{w}\left(\varphi_{i, m}\right)\left(w \in \stackrel{\circ}{W}, 1 \leq i \leq \ell, m \in \mathbb{Z}_{\geq 1}\right)$ are q-commutator monomial.

The key formula

Lemma ([S])

In general $U_{q}(\mathfrak{g})$, for any $n \geq 0$ and any two indices i, j ($i \neq j$), we have the following reduction formula:

$$
=[n]_{q_{i}}\left[1-a_{i j}-n\right]_{q_{i}}
$$

where $\bar{i}:=T_{i}\left(E_{i}\right)=-F_{i} K_{i}$,
and let RHS := 0 when $n=0$.

Algorithm to compute root vectors

To construct concrete identities, we have to compute root vectors explicitly. Since root vectors are described by braid group action,

- For $\alpha=s_{i_{1}} s_{i_{2}} \ldots s_{i_{m-1}}\left(\alpha_{i_{m}}\right)\left(s_{i_{1}} \ldots s_{i_{m}}:\right.$ reduced $)$, represent $T_{i_{1}} T_{i_{2}} \ldots T_{i_{m-1}}\left(E_{i_{m}}\right)$ as a q-commutator monomial.
- We manipulate a binary tree, each of whose leaf holds a pair of a reduced expression and an index.
- At the beginning we have a binary tree consists of only one leaf, which has $\left(s_{i_{1}} s_{i_{2}} \ldots s_{i_{m-1}}, i_{m}\right)$.

Algorithm to compute root vectors

- For each leaf of the binary tree, the following manipulations are applied recursively.
The process terminates when the length of reduced expression $m=0$.
- $s_{i_{1}} s_{i_{2}} \ldots s_{i_{m-2}}\left(\alpha_{i_{m}}\right) \in \Delta_{+} \Rightarrow$ make branch: generate new 2 leaves: $\left(s^{\prime}, i_{m-1}\right),\left(s^{\prime}, i_{m}\right)$, where $s^{\prime}:=s_{i_{1}} s_{i_{2}} \ldots s_{i_{m-2}}$
- $s_{i_{1}} s_{i_{2}} \ldots s_{i_{m-2}}\left(\alpha_{i_{m}}\right) \in \Delta_{-} \Rightarrow$ reduction: $\left(\ldots s_{k} s_{i} s_{j}, i\right) \mapsto\left(\ldots s_{k}, j\right)(A D E)$.
Example: $\mathfrak{g}=\widehat{\mathfrak{s l}_{3}}$, type $A_{2}^{(1)}$

$$
\begin{aligned}
T_{0} T_{1} T_{2}\left(E_{0}\right)=012[0]={ }^{01[2]} \underbrace{}_{01[0]}=\underbrace{0[1]} \underbrace{0[2]} 1
\end{aligned} \stackrel{01}{0102} 1_{42 / 48} .
$$

Quantum algebra $U_{q}(\mathfrak{g})$ and universal R-matrix

Convex orders and construction of convex bases for quantum affine algebras

Representing root vectors as q-commutator monomial

(5) Construction of quantum dilogarithm identities

Degeneration of Θ

Choose $\sigma_{i j} \in\{ \pm 1\}$ for $i<j$ s.t. $a_{i j} \neq 0$, and set

$$
b_{i j}:= \begin{cases}\sigma_{i j}\left(\alpha_{i}, \alpha_{j}\right) & i<j \\ 0 & i=j \\ -\sigma_{i j}\left(\alpha_{i}, \alpha_{j}\right) & i>j\end{cases}
$$

There is natural $1: 1$ correspondence between sign data $\left(\sigma_{i j}\right)_{i j}$ and orientation of Dynkin quiver.
Let \mathcal{P}_{B}^{+}be a $\mathbb{Q}(q)$-algebra defined by the generators and relations below.

Generators: $e_{1}, e_{2}, \ldots, e_{n}$.

$$
\text { Relations : } e_{i} e_{j}=q^{b_{i j}} e_{j} e_{i} \quad(i, j=1,2, \ldots, n)
$$

If $i<j$ and $\sigma_{i j}=+1$, then $\left[e_{i}, e_{j}\right]_{q}=0$.

Degeneration of Θ

Proposition

There exists unique Q-graded algebra surjection

$$
\pi_{B}^{+}: U_{q}^{+} \rightarrow \mathcal{P}_{B}^{+}
$$

such that $\pi_{B}^{+}\left(E_{i}\right)=e_{i}$ for all $i=1, \ldots, n$.
In the same way, we have algebra surjection $\pi_{B}^{-}: U_{q}^{-} \rightarrow \mathcal{P}_{B}^{-}=\left\langle f_{i}\right\rangle$ such that $\left[f_{i}, f_{j}\right]_{q}=0$ if $\sigma_{i j}=+1$. Extending continuously these maps, we have

$$
\pi_{B}^{+} \widehat{\otimes} \pi_{B}^{-}: U_{q}^{+} \widehat{\otimes} U_{q}^{-} \rightarrow \mathcal{P}_{B}^{+} \widehat{\otimes} \mathcal{P}_{B}^{-}
$$

and thus the image $\pi_{B}^{+} \widehat{\otimes} \pi_{B}^{-}(\Theta)$ makes sense. We can degenerate Θ using this map.

Example: $\mathfrak{g}=\widehat{\mathfrak{s l}_{3}}$, type $A_{2}^{(1)}$

- Let \leq be the convex order of 2-row type presented earlier.
- Write down two product presentations of Θ determined by \leq and the reversed order $\leq{ }^{\mathrm{op}}$.
- Set $B=\stackrel{(1)}{\longrightarrow(2)}\left(\sigma_{01}=e_{02}=\sigma_{12}=+1\right)$ and explicitly compute $\pi_{B}^{+} \widehat{\otimes} \pi_{B}^{-}(\Theta)$ using the algorithm.
- Equating them, we eventually obtain the quantum dilogarithm identity of next page.
- By change of variables, this identity coincide with the first one of page 8, labeled $A_{2}^{(1)}$.
- In the same way, other 3 identities can also be derived.

Example: $\mathfrak{g}=\widehat{\mathfrak{s l}} 3$, type $A_{2}^{(1)}$

Let $y_{i}:=-\left(q-q^{-1}\right)^{2} e_{i} \otimes f_{i}(i=0,1,2)$, then

$$
\mathbb{E}\left(: y_{2}:\right) \mathbb{E}\left(: y_{1}:\right) \mathbb{E}\left(: y_{0}:\right)
$$

$$
=\left\{\prod_{m \geq 0}^{\rightarrow} \mathbb{E}\left(: y_{0}^{m+1} y_{1}^{m} y_{2}^{m}:\right) \mathbb{E}\left(: y_{0}^{m+1} y_{1}^{m+1} y_{2}^{m}:\right)\right\} \mathbb{E}\left(: y_{0} y_{2}:\right)
$$

$$
\times \mathbb{E}\left(-q: y_{0} y_{1} y_{2}:\right)^{-1} \mathbb{E}\left(-q^{-1}: y_{0} y_{1} y_{2}:\right)^{-1}
$$

$$
\times \mathbb{E}\left(: y_{1}:\right)\left\{\prod_{m \geq 0}^{\leftarrow} \mathbb{E}\left(: y_{0}^{m} y_{1}^{m+1} y_{2}^{m+1}:\right) \mathbb{E}\left(: y_{0}^{m} y_{1}^{m} y_{2}^{m+1}:\right)\right\}
$$

where $\prod_{m \geq 0}^{\rightarrow} a_{m}:=a_{0} a_{1} a_{2} \ldots, \prod_{m \geq 0}^{\leftarrow} a_{m}:=\ldots a_{2} a_{1} a_{0}$, $: y_{0}^{l} y_{1}^{m} y_{2}^{n}::=q^{l m+m n+n l} y_{0}^{l} y_{1}^{m} y_{2}^{n}$.

References

[B] J. Beck. Convex bases of PBW type for quantum affine algebras, Comm. Math. Phys. 165 (1994), no. 1, 193-199.
[DGS] T. Dimofte, S. Gukov, Y. Soibelman. Quantum Wall Crossing in N=2 Gauge Theories, Lett. Math. Phys. 95 (2011) 1-25, arXiv:0912.1346.
[FG] V.V. Fock, A. B. Goncharov. Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865-930, math.AG/0311245.
[Ito] K. Ito. The classification of convex orders on affine root systems, Comm. in Alg. 29 (2001), 5605-5630, arXiv:math/9912020.
[Ito2] K. Ito. A new description of convex bases of PBW type for untwisted quantum affine algebras, Hiroshima Math. J. 40 (2010), 133-183.
[KN] R. M. Kashaev, T. Nakanishi. Classical and Quantum Dilogarithm Identities, SIGMA 7 (2011), 102, 29 pages, arXiv:1104.4630.
[Lus] G. Lusztig. Introduction to Quantum Groups, Birkhäuser, Boston, (1993).
[S] M. Sugawara. Quantum dilogarithm identites arising from the product formula for universal R-matrix of quantum affine algebras, in press.
[T] S. Terasaki. On the product formula of the universal R matrix for quantum groups, master's thesis, Tohoku University, (2015).

Some conjecture

Let $\mathfrak{g}=\widehat{\mathfrak{s l}_{N}}(N \geq 2), \ell:=N-1$,

be the Dynkin quiver whose vertex 0 is unique source and vertex i is unique sink,
$A_{i}:=\left\{\alpha_{j}+\alpha_{j+1}+\cdots+\alpha_{k} \mid 1 \leq j \leq i \leq k \leq \ell\right\} \subset \grave{\Delta}_{+}$ be the set of positive roots containing α_{i} component, and for $w \in W$,

$$
\Phi(w):=w \grave{\Delta}_{-} \cap \grave{\Delta}_{+} .
$$

Some conjecture

Conjecture

If $A_{i} \nsubseteq \Phi(w)$, then $\pi_{Q_{i}}^{+}\left(T_{w}\left(\varphi_{j, m}\right)\right)=0$ for all j and m. When $A_{i} \subset \Phi(w)$, then there exists a permutation of indices σ such that

$$
\begin{aligned}
& \left(q-q^{-1}\right) \pi_{Q_{i}}^{+}\left(T_{w}\left(\varphi_{j, m}\right)\right)= \\
& \left\{\begin{array}{ll}
D & m=1,|j-\check{i}|=1 \\
{[m+1]_{q} D^{m}} & j=\check{i} \\
0 & \text { otherwise }
\end{array},\right.
\end{aligned}
$$

$$
\text { where } \check{i}:=N-i \text { and } D:=\left(q-q^{-1}\right)^{N} e_{\sigma(0)} e_{\sigma(1)} \ldots e_{\sigma(\ell)} \text {. }
$$

Some conjecture

Corollary

If the conjecture is true, then for arbitrary convex order

$$
\begin{aligned}
& \pi_{Q_{i}}^{+} \widehat{\otimes} \pi_{Q_{i}}^{-}\left(\Theta_{\mathrm{im}}\right)= \\
& \left\{\begin{array}{l}
\mathbb{E}\left(-q: y_{0} y_{1} \ldots y_{\ell}:\right)^{-1} \mathbb{E}\left(-q^{-1}: y_{0} y_{1} \ldots y_{\ell}:\right)^{-1} \\
1
\end{array}\right.
\end{aligned}
$$

depending on w. Thus using the quiver Q_{i}, we can obtain quantum dilogarithm identities using any convex order.
Any acyclic Dynkin quiver of type $A_{\ell}^{(1)}$ can be obtained by applying mutation at source or sink finitely many times on the quiver Q_{i}.
$51 / 48$

