Kronecker Coefficients via Upper Cluster Algebras

JiaRui Fei

TCA 2022 Sep. 21

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Multiple Incarnation of Kronecker Coefficients

 Tensor product multiplicity of representations of symmetric groups;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Inner plethysm of Schur functions;
- 3. Corresponding representations of general linear groups.

The Multiple Incarnation of Kronecker Coefficients

 Tensor product multiplicity of representations of symmetric groups;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Inner plethysm of Schur functions;
- 3. Corresponding representations of general linear groups.

The Multiple Incarnation of Kronecker Coefficients

 Tensor product multiplicity of representations of symmetric groups;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2. Inner plethysm of Schur functions;
- 3. Corresponding representations of general linear groups.

Tenor Multiplicity of Representations of Symmetric Groups

Let S^{λ} be the irreducible complex representation of \mathfrak{S}_n . The Kronecker coefficients $g_{\mu,\nu}^{\lambda}$ are the tensor product multiplicities:

$$S^{\mu}\otimes S^{
u}\cong igoplus_{\lambda}g^{\lambda}_{\mu,
u}S^{\lambda}.$$

cf. Littlewood-Richardson coefficients

$$(S^{\mu}\otimes S^{\nu})\uparrow^{\mathfrak{S}_{|\lambda|}}_{\mathfrak{S}_{|\mu|}\times\mathfrak{S}_{|\nu|}}\cong \bigoplus_{\lambda}c^{\lambda}_{\mu,\nu}S^{\lambda}.$$

Tenor Multiplicity of Representations of Symmetric Groups

Let S^{λ} be the irreducible complex representation of \mathfrak{S}_n . The Kronecker coefficients $g^{\lambda}_{\mu,\nu}$ are the tensor product multiplicities:

$$S^\mu\otimes S^
u\cong igoplus_\lambda g^\lambda_{\mu,
u}S^\lambda.$$

cf. Littlewood-Richardson coefficients

$$(S^{\mu}\otimes S^{\nu})\uparrow_{\mathfrak{S}_{|\mu|} imes\mathfrak{S}_{|\nu|}}^{\mathfrak{S}_{|\lambda|}}\cong \bigoplus_{\lambda}c_{\mu,\nu}^{\lambda}S^{\lambda}.$$

Let $S_{\lambda}(V)$ be the irreducible complex representation of GL(V).

$$\mathcal{S}_\lambda(V\otimes W) = igoplus_{\mu,
u} g^\lambda_{\mu,
u} \mathcal{S}_\mu(V)\otimes \mathcal{S}_
u(W).$$

This follows from the Schur-Weyl duality because

 $S_{\lambda}(V) = \operatorname{Hom}_{\mathfrak{S}_n}(S^{\lambda}, V^{\otimes n}).$

In terms of Schur functions:

$$s_\lambda(\mathbf{x}\mathbf{y}) = \sum_{\mu,
u} g^\lambda_{\mu,
u} s_\mu(\mathbf{x}) s_
u(\mathbf{y}).$$

cf. Littlewood-Richardson coefficients

$$S_{\mu}(V)\otimes S_{
u}(V)\cong igoplus_{\lambda}c_{\mu,
u}^{\lambda}S_{\lambda}(V)$$

Let $S_{\lambda}(V)$ be the irreducible complex representation of GL(V).

$$S_\lambda(V\otimes W)=igoplus g_{\mu,
u}^\lambda S_\mu(V)\otimes S_
u(W).$$

This follows from the Schur-Weyl duality because

$$S_{\lambda}(V) = \operatorname{Hom}_{\mathfrak{S}_n}(S^{\lambda}, V^{\otimes n}).$$

In terms of Schur functions:

$$s_\lambda(\mathbf{x}\mathbf{y}) = \sum_{\mu,
u} g^\lambda_{\mu,
u} s_\mu(\mathbf{x}) s_
u(\mathbf{y}).$$

cf. Littlewood-Richardson coefficients

$$S_{\mu}(V)\otimes S_{
u}(V)\cong igoplus_{\lambda}c_{\mu,
u}^{\lambda}S_{\lambda}(V)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $S_{\lambda}(V)$ be the irreducible complex representation of GL(V).

$$S_\lambda(V\otimes W)=igoplus g_{\mu,
u}^\lambda S_\mu(V)\otimes S_
u(W).$$

This follows from the Schur-Weyl duality because

$$S_{\lambda}(V) = \operatorname{Hom}_{\mathfrak{S}_n}(S^{\lambda}, V^{\otimes n}).$$

In terms of Schur functions:

$$egin{aligned} s_\lambda(\mathbf{x}\mathbf{y}) &= \sum_{\mu,
u} g^\lambda_{\mu,
u} oldsymbol{s}_\mu(\mathbf{x}) oldsymbol{s}_
u(\mathbf{y}). \end{aligned}$$

cf. Littlewood-Richardson coefficients

$$S_{\mu}(V)\otimes S_{
u}(V)\cong igoplus_{\lambda}c_{\mu,
u}^{\lambda}S_{\lambda}(V)$$

Let $S_{\lambda}(V)$ be the irreducible complex representation of GL(V).

$$S_\lambda(V\otimes W)=igoplus g_{\mu,
u}^\lambda S_\mu(V)\otimes S_
u(W).$$

This follows from the Schur-Weyl duality because

$$S_{\lambda}(V) = \operatorname{Hom}_{\mathfrak{S}_n}(S^{\lambda}, V^{\otimes n}).$$

In terms of Schur functions:

$$egin{aligned} s_\lambda(\mathbf{x}\mathbf{y}) &= \sum_{\mu,
u} g^\lambda_{\mu,
u} s_\mu(\mathbf{x}) s_
u(\mathbf{y}). \end{aligned}$$

cf. Littlewood-Richardson coefficients

$$S_{\mu}(V)\otimes S_{\nu}(V)\cong igoplus_{\lambda}c_{\mu,
u}^{\lambda}S_{\lambda}(V).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. Character table

$$g_{\lambda,\mu,\nu} = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{\nu}(\sigma).$$

2. Dvir's recursive algorithm (1993) 3. Counting lattice points (in $\ell(\lambda)!\ell(\mu)!\ell(\nu)!$ polytopes) (2008)

$$\prod_{i,j,k} \frac{1}{1 - x_i y_j z_k} = \sum_{\lambda,\mu,\nu} g_{\lambda,\mu,\nu} s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1. Character table

$$g_{\lambda,\mu,\nu} = rac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{\nu}(\sigma).$$

- 2. Dvir's recursive algorithm (1993)
- 3. Counting lattice points (in $\ell(\lambda)!\ell(\mu)!\ell(\nu)!$ polytopes) (2008)

$$\prod_{i,j,k} \frac{1}{1 - x_i y_j z_k} = \sum_{\lambda,\mu,\nu} g_{\lambda,\mu,\nu} s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1. Character table

$$g_{\lambda,\mu,\nu} = rac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{\nu}(\sigma).$$

- 2. Dvir's recursive algorithm (1993)
- 3. Counting lattice points (in $\ell(\lambda)!\ell(\mu)!\ell(\nu)!$ polytopes) (2008)

$$\prod_{i,j,k} \frac{1}{1-x_i y_j z_k} = \sum_{\lambda,\mu,\nu} g_{\lambda,\mu,\nu} s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1. Character table

$$g_{\lambda,\mu,\nu} = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma) \chi^{\nu}(\sigma).$$

- 2. Dvir's recursive algorithm (1993)
- 3. Counting lattice points (in $\ell(\lambda)!\ell(\mu)!\ell(\nu)!$ polytopes) (2008)

$$\prod_{i,j,k} \frac{1}{1-x_i y_j z_k} = \sum_{\lambda,\mu,\nu} g_{\lambda,\mu,\nu} s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Role in the Geometric Complexity Theory

The Geometric Complexity Theory (GCT) is a research program in computational complexity theory proposed by K. Mulmuley and M. Sohoni to attack the famous open problem in computer science whether P = NP by showing that the complexity class P is not equal to the complexity class NP.

It is known computing Kronecker coefficients is # P-hard, but on the other hand computing Littlewood-Richardson coefficients is #P-complete. There are polynomial time (in ℓ) algorithm for computing Littlewood-Richardson coefficients.

The Role in the Geometric Complexity Theory

The Geometric Complexity Theory (GCT) is a research program in computational complexity theory proposed by K. Mulmuley and M. Sohoni to attack the famous open problem in computer science whether P = NP by showing that the complexity class P is not equal to the complexity class NP.

It is known computing Kronecker coefficients is # P-hard, but on the other hand computing Littlewood-Richardson coefficients is #P-complete. There are polynomial time (in ℓ) algorithm for computing Littlewood-Richardson coefficients.

The Role in the Geometric Complexity Theory

The Geometric Complexity Theory (GCT) is a research program in computational complexity theory proposed by K. Mulmuley and M. Sohoni to attack the famous open problem in computer science whether P = NP by showing that the complexity class P is not equal to the complexity class NP.

It is known computing Kronecker coefficients is # P-hard, but on the other hand computing Littlewood-Richardson coefficients is # P-complete. There are polynomial time (in ℓ) algorithm for computing Littlewood-Richardson coefficients.

Flagged Kronecker Quivers

Let $K^m_{\ell,\ell}$ be the flagged Kronecker quiver

$$\overline{1} \longrightarrow \overline{2} \longrightarrow \cdots \longrightarrow \overline{\ell} \xrightarrow[m \text{ arrows}]{} \ell \longrightarrow \cdots \longrightarrow 2 \longrightarrow 1$$

and β_{ℓ} be the dimension vector defined by $\beta_{\ell}(i) = |i|$. Consider the product of special linear group $SL_{\beta_{\ell}}$ acting naturally on the quiver representation space $\operatorname{Rep}_{\beta_{\ell}}(K_{\ell,\ell}^m)$.

$$\mathsf{Rep}_{\beta_{\ell}}(K_{\ell,\ell}^{m}) := \bigoplus_{i=1}^{l-1} \left(\mathsf{Hom}(V_{-i}, V_{-(i+1)}) \oplus \mathsf{Hom}(V_{i+1}, V_{i})\right) \\ \oplus \mathsf{Hom}(V_{-l}, V_{l}) \otimes W.$$

Flagged Kronecker Quivers

Let $K^m_{\ell,\ell}$ be the flagged Kronecker quiver

$$\overline{1} \longrightarrow \overline{2} \longrightarrow \cdots \longrightarrow \overline{\ell} \xrightarrow[m \text{ arrows}]{} \ell \longrightarrow \cdots \longrightarrow 2 \longrightarrow 1$$

and β_{ℓ} be the dimension vector defined by $\beta_{\ell}(i) = |i|$. Consider the product of special linear group $SL_{\beta_{\ell}}$ acting naturally on the quiver representation space $\operatorname{Rep}_{\beta_{\ell}}(K_{\ell,\ell}^m)$.

$$\mathsf{Rep}_{\beta_{\ell}}(K_{\ell,\ell}^{m}) := \bigoplus_{i=1}^{l-1} \left(\mathsf{Hom}(V_{-i}, V_{-(i+1)}) \oplus \mathsf{Hom}(V_{i+1}, V_{i})\right) \\ \oplus \mathsf{Hom}(V_{-l}, V_{l}) \otimes W.$$

Flagged Kronecker Quivers

Let $K_{\ell,\ell}^m$ be the flagged Kronecker quiver

$$\overline{1} \longrightarrow \overline{2} \longrightarrow \cdots \longrightarrow \overline{\ell} \xrightarrow[m \text{ arrows}]{} \ell \longrightarrow \cdots \longrightarrow 2 \longrightarrow 1$$

and β_{ℓ} be the dimension vector defined by $\beta_{\ell}(i) = |i|$. Consider the product of special linear group $SL_{\beta_{\ell}}$ acting naturally on the quiver representation space $\operatorname{Rep}_{\beta_{\ell}}(K_{\ell,\ell}^m)$.

$$\mathsf{Rep}_{\beta_{\ell}}(K_{\ell,\ell}^{m}) := \bigoplus_{i=1}^{l-1} \left(\mathsf{Hom}(V_{-i}, V_{-(i+1)}) \oplus \mathsf{Hom}(V_{i+1}, V_{i})\right) \\ \oplus \mathsf{Hom}(V_{-l}, V_{l}) \otimes W.$$

Semi-invariants of Flagged Kronecker Quivers

Definition The semi-invariant ring $SI_{\beta_{\ell}}(K_{\ell,\ell}^m)$ is by definition equal to $\mathbb{C}[\operatorname{Rep}_{\beta_{\ell}}(K_{\ell,\ell}^m)]^{SL_{\beta_{\ell}}}.$

The semi-invariant ring $Sl_{\beta_{\ell}}(K_{\ell,\ell}^m)$ is graded by a weight $\sigma \in \mathbb{Z}^{2\ell}$ and a weight λ of $T \subset GL(W)$:

$$\mathsf{Sl}_{\beta_{\ell}}(K^m_{\ell,\ell}) = \bigoplus_{\sigma,\lambda} \mathsf{Sl}_{\beta_{\ell}}(K^m_{\ell,\ell})_{\sigma,\lambda}.$$

Here

 $\mathsf{SI}_{eta_\ell}(K^m_{\ell,\ell})_{\sigma,\lambda} = \{f \in \mathbb{C}[\operatorname{Rep}_{eta_\ell}(K^m_{\ell,\ell})] \mid (g,t) \cdot f = \chi_\sigma(g)t^\lambda f$ $\forall g \in \mathsf{GL}_{eta_\ell}, \ t \in T\}.$

Semi-invariants of Flagged Kronecker Quivers

Definition

The semi-invariant ring $Sl_{\beta_{\ell}}(K_{\ell,\ell}^m)$ is by definition equal to $\mathbb{C}[\operatorname{Rep}_{\beta_{\ell}}(K_{\ell,\ell}^m)]^{SL_{\beta_{\ell}}}$.

The semi-invariant ring $Sl_{\beta_{\ell}}(K_{\ell,\ell}^m)$ is graded by a weight $\sigma \in \mathbb{Z}^{2\ell}$ and a weight λ of $T \subset GL(W)$:

$$\mathsf{Sl}_{\beta_\ell}(\mathsf{K}^m_{\ell,\ell}) = \bigoplus_{\sigma,\lambda} \mathsf{Sl}_{\beta_\ell}(\mathsf{K}^m_{\ell,\ell})_{\sigma,\lambda}.$$

Here

 $\mathsf{SI}_{\beta_{\ell}}(K^{m}_{\ell,\ell})_{\sigma,\lambda} = \{ f \in \mathbb{C}[\operatorname{Rep}_{\beta_{\ell}}(K^{m}_{\ell,\ell})] \mid (g,t) \cdot f = \chi_{\sigma}(g)t^{\lambda}f \\ \forall g \in \mathsf{GL}_{\beta_{\ell}}, \ t \in T \}.$

Semi-invariants of Flagged Kronecker Quivers

Definition

The semi-invariant ring $Sl_{\beta_{\ell}}(K^m_{\ell,\ell})$ is by definition equal to $\mathbb{C}[\operatorname{Rep}_{\beta_{\ell}}(K^m_{\ell,\ell})]^{SL_{\beta_{\ell}}}.$

The semi-invariant ring $Sl_{\beta_{\ell}}(K_{\ell,\ell}^m)$ is graded by a weight $\sigma \in \mathbb{Z}^{2\ell}$ and a weight λ of $T \subset GL(W)$:

$$\mathsf{Sl}_{\beta_\ell}(\mathsf{K}^m_{\ell,\ell}) = \bigoplus_{\sigma,\lambda} \mathsf{Sl}_{\beta_\ell}(\mathsf{K}^m_{\ell,\ell})_{\sigma,\lambda}.$$

Here

$$\begin{aligned} \mathsf{SI}_{\beta_{\ell}}(\mathsf{K}^{m}_{\ell,\ell})_{\sigma,\lambda} &= \{f \in \mathbb{C}[\mathsf{Rep}_{\beta_{\ell}}(\mathsf{K}^{m}_{\ell,\ell})] \mid (g,t) \cdot f = \chi_{\sigma}(g)t^{\lambda}f \\ \forall g \in \mathsf{GL}_{\beta_{\ell}}, \ t \in T\}. \end{aligned}$$

Kronecker Coefficients via Semi-invariant Rings

For any pair of partitions μ and ν of *length* no greater than ℓ , we can associate a weight vector $\sigma(\mu, \nu) \in \mathbb{Z}^{K_{\ell,\ell}^m}$.

Theorem (F)

Let (μ, ν, λ) be a triple of partitions of length no greater than ℓ, ℓ and m respectively, then

$$g_{\mu,
u}^{\lambda} = \sum_{\omega \in \mathfrak{S}_m} \operatorname{sgn}(\omega) \operatorname{dim} \operatorname{Sl}_{\beta_\ell}(K_{\ell,\ell}^m)_{\sigma(\mu,
u),\lambda^{\omega}},$$

where λ^{ω} is the weight defined by $(\lambda^{\omega})(i) = \lambda(i) - i + \omega(i)$.

Kronecker Coefficients via Semi-invariant Rings

For any pair of partitions μ and ν of *length* no greater than ℓ , we can associate a weight vector $\sigma(\mu, \nu) \in \mathbb{Z}^{K_{\ell,\ell}^m}$.

Theorem (F)

Let (μ, ν, λ) be a triple of partitions of length no greater than ℓ, ℓ and m respectively, then

$$g_{\mu,\nu}^{\lambda} = \sum_{\omega \in \mathfrak{S}_m} \operatorname{sgn}(\omega) \operatorname{dim} \operatorname{Sl}_{\beta_{\ell}}(K_{\ell,\ell}^m)_{\sigma(\mu,\nu),\lambda^{\omega}},$$

where λ^{ω} is the weight defined by $(\lambda^{\omega})(i) = \lambda(i) - i + \omega(i)$.

Upper Cluster Algebra

Let $\mathcal{L}(\mathbf{x})$ be the Laurent polynomial algebra in cluster \mathbf{x} which is polynomial in coefficient variables. The upper cluster algebra $\overline{\mathcal{C}}(\Delta, \mathbf{x})$ is the intersection of all $\mathcal{L}(\mathbf{x}')$ where \mathbf{x}' is a cluster.

$$\overline{\mathcal{C}}(\Delta, \mathbf{x}) := \bigcap_{(\Delta', \mathbf{x}') \sim (\Delta, \mathbf{x})} \mathcal{L}(\mathbf{x}').$$

By the Laurent Phenomenon, it contains the cluster algebra associated to (Δ, \mathbf{x}) .

Upper Cluster Algebra

Let $\mathcal{L}(\mathbf{x})$ be the Laurent polynomial algebra in cluster \mathbf{x} which is polynomial in coefficient variables. The upper cluster algebra $\overline{\mathcal{C}}(\Delta, \mathbf{x})$ is the intersection of all $\mathcal{L}(\mathbf{x}')$ where \mathbf{x}' is a cluster.

$$\overline{\mathcal{C}}(\Delta, \mathbf{x}) := igcap_{(\Delta', \mathbf{x}') \sim (\Delta, \mathbf{x})} \mathcal{L}(\mathbf{x}').$$

By the Laurent Phenomenon, it contains the cluster algebra associated to (Δ, \mathbf{x}) .

The Hive Quivers

Here is a hive quiver Δ_{ℓ} ($\ell = 5$).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Quivers from Gluing Oriented Triangles

Gluing m-1 Diamond Quivers

Let \Diamond_{ℓ}^{m} be quiver obtained by inconsistently gluing the m-1 diamond quivers along the edges with the same label. Note that the first one has two edges glued together.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Example: gluing a single diamond quiver

By definition, the quiver of the first diamond after gluing the edge 1 looks like (when $\ell = 5$)

Extending \Diamond_{ℓ}^{m}

We insert one frozen vertices n and three arrows to each n-th diamond as shown below, and get a quiver denoted by $\overline{\Diamond}_{\ell}^{m}$.

The semi-invariant rings are upper cluster algebras

Theorem (F)

For any $\ell, m \geq 2$, the semi-invariant ring $Sl_{\beta_{\ell}}(K_{\ell,\ell}^m)$ is isomorphic to the graded upper cluster algebra $\overline{\mathcal{C}}(\overline{\Diamond}_{\ell}^m, \overline{\mathbf{s}}_{\ell}^m; \overline{\sigma}_{\ell}^m)$. Here, each cluster variable in $\overline{\mathbf{s}}_{\ell}^m$ is a Schofield's semi-invariant.

The category of representations of a quiver without oriented cycles is abelian, Krull-Schimdt, having enough projective and injective objects.

The indecomposable projective representations P_i are in bijection with the vertices of Q. The vector space $P_i(j)$ is spanned by all paths from i to j.

The category of representations of a quiver without oriented cycles is abelian, Krull-Schimdt, having enough projective and injective objects.

The indecomposable projective representations P_i are in bijection with the vertices of Q. The vector space $P_i(j)$ is spanned by all paths from i to j.

Schofield's Semi-invariants

Let Q be a quiver without oriented cycles. Take a projective presentation f, that is, f is an element in $\text{Hom}_Q(P_1, P_0)$. We apply $\text{Hom}_Q(-, W)$ to f and obtain

 $\operatorname{Hom}_{Q}(P_{0},W) \xrightarrow{f(W)} \operatorname{Hom}_{Q}(P_{1},W).$

We define a polynomial function s_f on $\operatorname{Rep}_{\beta}(Q)$ by

 $s_f(W) = \det(f(W)).$

In this definition, we ask dim $\operatorname{Hom}_Q(P_0, W) = \dim \operatorname{Hom}_Q(P_1, W)$.
Schofield's Semi-invariants

Let Q be a quiver without oriented cycles. Take a projective presentation f, that is, f is an element in $\text{Hom}_Q(P_1, P_0)$. We apply $\text{Hom}_Q(-, W)$ to f and obtain

$$\operatorname{Hom}_{Q}(P_{0},W) \xrightarrow{f(W)} \operatorname{Hom}_{Q}(P_{1},W).$$

We define a polynomial function s_f on $\operatorname{Rep}_{\beta}(Q)$ by

$$s_f(W) = \det(f(W)).$$

In this definition, we ask dim $\operatorname{Hom}_Q(P_0, W) = \dim \operatorname{Hom}_Q(P_1, W)$.

Schofield's Semi-invariants

Let Q be a quiver without oriented cycles. Take a projective presentation f, that is, f is an element in $\text{Hom}_Q(P_1, P_0)$. We apply $\text{Hom}_Q(-, W)$ to f and obtain

$$\operatorname{Hom}_Q(P_0, W) \xrightarrow{f(W)} \operatorname{Hom}_Q(P_1, W).$$

We define a polynomial function s_f on $\operatorname{Rep}_{\beta}(Q)$ by

$$s_f(W) = \det(f(W)).$$

In this definition, we ask dim $\operatorname{Hom}_Q(P_0, W) = \dim \operatorname{Hom}_Q(P_1, W)$.

How a typical $\overline{\mathbf{s}}_{\ell}^m$ looks like? Let $\widetilde{f}_{i,i}^n$ be the following presentation for n = 2r + 2

$$P_{i+j} \oplus rP_{\ell} \xrightarrow{\left[\begin{array}{ccccccccc} n & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 3 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & n-4 & n-3 \\ 0 & n-1 & 0 & \cdots & 0 & n-2 \end{array}\right)} P_{-i} \oplus P_{-j} \oplus rP_{-\ell}$$

and the following one for n = 2r + 1

$$P_{i+j} \oplus rP_{\ell} \xrightarrow{n \ 0 \ 1 \ 0 \ \cdots \ 0} 0 \ \cdots \ 0 \ \cdots \ 0 \ n \ \cdots \ 0 \ n \ \cdots \ 0 \ n \ n-1} P_{i+j} \oplus rP_{\ell} \xrightarrow{n \ 0 \ n \ 0 \ \cdots \ 0} P_{-j} \oplus rP_{-\ell}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How a typical $\overline{\mathbf{s}}_{\ell}^{m}$ looks like? Let $\tilde{f}_{i,i}^{n}$ be the following presentation for n = 2r + 2

$$P_{i+j} \oplus rP_{\ell} \xrightarrow{\left[\begin{array}{ccccccccc} n & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 3 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & n-4 & n-3 \\ 0 & n-1 & 0 & \cdots & 0 & n-2 \end{array}\right)} P_{-i} \oplus P_{-j} \oplus rP_{-\ell}$$

and the following one for n = 2r + 1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

It is known (F) semi-invariant rings of the triple flag quivers T_ℓ

are upper cluster algebras with seeds given by the hive quivers $\Delta_\ell.$ Let

$$R_{\ell,\ell}^m = \bigoplus_{i=1}^{r-1} \left(\operatorname{Hom}(V_{-i}, V_{-(i+1)}) \oplus \operatorname{Hom}(V_{i+1}, V_i) \right) \oplus \left(\operatorname{SL}_{\ell} \otimes W \right).$$

There are natural maps from an open subset U of $R_{\ell,\ell}^m / |SL_{\beta_\ell}$ to an open subset of $\operatorname{Rep}_{\beta_{\ell'}}(T_\ell) / |SL_{\beta_{\ell'}}$. Our seed is obtained by gluing these seeds from hives according to certain rule. In the end, we add some coefficients to pass from $R_{\ell,\ell}^m$ to the $\operatorname{Rep}_{\beta_\ell}(K_{\ell,\ell}^m)$.

It is known (F) semi-invariant rings of the triple flag quivers T_ℓ

are upper cluster algebras with seeds given by the hive quivers $\Delta_\ell.$ Let

$$R_{\ell,\ell}^{m} = \bigoplus_{i=1}^{l-1} \left(\operatorname{Hom}(V_{-i}, V_{-(i+1)}) \oplus \operatorname{Hom}(V_{i+1}, V_{i}) \right) \oplus \left(\operatorname{SL}_{\ell} \otimes W \right).$$

There are natural maps from an open subset U of $R_{\ell,\ell}^m / |SL_{\beta_\ell}$ to an open subset of $\operatorname{Rep}_{\beta_\ell'}(T_\ell) / |SL_{\beta_\ell'}$. Our seed is obtained by gluing these seeds from hives according to certain rule. In the end, we add some coefficients to pass from $R_{\ell,\ell}^m$ to the $\operatorname{Rep}_{\beta_\ell}(K_{\ell,\ell}^m)$.

It is known (F) semi-invariant rings of the triple flag quivers T_ℓ

are upper cluster algebras with seeds given by the hive quivers $\Delta_\ell.$ Let

$$R_{\ell,\ell}^m = \bigoplus_{i=1}^{l-1} \left(\operatorname{Hom}(V_{-i}, V_{-(i+1)}) \oplus \operatorname{Hom}(V_{i+1}, V_i) \right) \oplus \left(\operatorname{SL}_{\ell} \otimes W \right).$$

There are natural maps from an open subset U of $R_{\ell,\ell}^m / |SL_{\beta_\ell}$ to an open subset of $\operatorname{Rep}_{\beta_\ell'}(T_\ell) / |SL_{\beta_\ell'}$. Our seed is obtained by gluing these seeds from hives according to certain rule. In the end, we add some coefficients to pass from $R_{\ell,\ell}^m$ to the $\operatorname{Rep}_{\beta_\ell}(K_{\ell,\ell}^m)$.

It is known (F) semi-invariant rings of the triple flag quivers T_ℓ

are upper cluster algebras with seeds given by the hive quivers $\Delta_\ell.$ Let

$$R_{\ell,\ell}^m = \bigoplus_{i=1}^{l-1} \left(\operatorname{Hom}(V_{-i}, V_{-(i+1)}) \oplus \operatorname{Hom}(V_{i+1}, V_i) \right) \oplus \left(\operatorname{SL}_{\ell} \otimes W \right).$$

There are natural maps from an open subset U of $R_{\ell,\ell}^m / SL_{\beta_\ell}$ to an open subset of $\operatorname{Rep}_{\beta_\ell'}(T_\ell) / SL_{\beta_\ell'}$. Our seed is obtained by gluing these seeds from hives according to certain rule.

In the end, we add some coefficients to pass from $R^m_{\ell,\ell}$ to the $\operatorname{Rep}_{\beta_\ell}(K^m_{\ell,\ell})$.

It is known (F) semi-invariant rings of the triple flag quivers T_ℓ

are upper cluster algebras with seeds given by the hive quivers $\Delta_\ell.$ Let

$$R_{\ell,\ell}^m = \bigoplus_{i=1}^{l-1} \left(\operatorname{Hom}(V_{-i}, V_{-(i+1)}) \oplus \operatorname{Hom}(V_{i+1}, V_i) \right) \oplus \left(\operatorname{SL}_{\ell} \otimes W \right).$$

There are natural maps from an open subset U of $R_{\ell,\ell}^m / |SL_{\beta_\ell}$ to an open subset of $\operatorname{Rep}_{\beta_\ell'}(T_\ell) / |SL_{\beta_\ell'}$. Our seed is obtained by gluing these seeds from hives according to certain rule. In the end, we add some coefficients to pass from $R_{\ell,\ell}^m$ to the $\operatorname{Rep}_{\beta_\ell}(K_{\ell,\ell}^m)$.

A potential \mathcal{P} on a quiver Δ is a linear combination of oriented cycles of Δ . The Jacobian ideal $\partial \mathcal{P}$ is the two-sided (closed) ideal in $\widehat{\mathbb{C}\Delta}$ generated by all "noncommutative partial derivatives" $\partial_a \mathcal{P}$. The Jacobian algebra $J(\Delta, \mathcal{P})$ is the quotient algebra $\widehat{\mathbb{C}\Delta}/\partial \mathcal{P}$.

The quiver mutation can be "lifted" to the mutation of quivers with potentials [DWZ].

・ロット (雪) (日) (日) (日)

A potential \mathcal{P} on a quiver Δ is a linear combination of oriented cycles of Δ . The Jacobian ideal $\partial \mathcal{P}$ is the two-sided (closed) ideal in $\widehat{\mathbb{C}\Delta}$ generated by all "noncommutative partial derivatives" $\partial_a \mathcal{P}$. The Jacobian algebra $J(\Delta, \mathcal{P})$ is the quotient algebra $\widehat{\mathbb{C}\Delta}/\partial \mathcal{P}$.

The quiver mutation can be "lifted" to the mutation of quivers with potentials [DWZ].

A potential \mathcal{P} on a quiver Δ is a linear combination of oriented cycles of Δ . The Jacobian ideal $\partial \mathcal{P}$ is the two-sided (closed) ideal in $\widehat{\mathbb{C}\Delta}$ generated by all "noncommutative partial derivatives" $\partial_a \mathcal{P}$. The Jacobian algebra $J(\Delta, \mathcal{P})$ is the quotient algebra $\widehat{\mathbb{C}\Delta}/\partial \mathcal{P}$.

The quiver mutation can be "lifted" to the mutation of quivers with potentials [DWZ].

A potential \mathcal{P} on a quiver Δ is a linear combination of oriented cycles of Δ . The Jacobian ideal $\partial \mathcal{P}$ is the two-sided (closed) ideal in $\widehat{\mathbb{C}\Delta}$ generated by all "noncommutative partial derivatives" $\partial_a \mathcal{P}$. The Jacobian algebra $J(\Delta, \mathcal{P})$ is the quotient algebra $\widehat{\mathbb{C}\Delta}/\partial \mathcal{P}$.

The quiver mutation can be "lifted" to the mutation of quivers with potentials [DWZ].

A potential \mathcal{P} on a quiver Δ is a linear combination of oriented cycles of Δ . The Jacobian ideal $\partial \mathcal{P}$ is the two-sided (closed) ideal in $\widehat{\mathbb{C}\Delta}$ generated by all "noncommutative partial derivatives" $\partial_a \mathcal{P}$. The Jacobian algebra $J(\Delta, \mathcal{P})$ is the quotient algebra $\widehat{\mathbb{C}\Delta}/\partial \mathcal{P}$.

The quiver mutation can be "lifted" to the mutation of quivers with potentials [DWZ].

A potential \mathcal{P} on a quiver Δ is a linear combination of oriented cycles of Δ . The Jacobian ideal $\partial \mathcal{P}$ is the two-sided (closed) ideal in $\widehat{\mathbb{C}\Delta}$ generated by all "noncommutative partial derivatives" $\partial_a \mathcal{P}$. The Jacobian algebra $J(\Delta, \mathcal{P})$ is the quotient algebra $\widehat{\mathbb{C}\Delta}/\partial \mathcal{P}$.

The quiver mutation can be "lifted" to the mutation of quivers with potentials [DWZ].

Example

Then the Jacobian ideal is generated by

$$\begin{array}{ll} \partial_{a}\mathcal{P}=cb, & & \partial_{a'}\mathcal{P}=cb', \\ \partial_{b}\mathcal{P}=ac, & & \partial_{b'}\mathcal{P}=a'c, \\ \partial_{c}\mathcal{P}=ba-b'a'. \end{array}$$

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Example

Then the Jacobian ideal is generated by

$$\begin{array}{ll} \partial_a \mathcal{P} = cb, & & \partial_{a'} \mathcal{P} = cb', \\ \partial_b \mathcal{P} = ac, & & \partial_{b'} \mathcal{P} = a'c, \\ \partial_c \mathcal{P} = ba - b'a'. \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

General Presentations

Similar as the quiver representations, we can consider the projective presentations for any finite-dimensional algebras. We denote $P(\beta) := \bigoplus_{i \in \Delta_0} \beta(i)P_i$. The presentation space of weight $g \in \mathbb{Z}^{\Delta_0}$ is the space

 $PHom(g) := Hom(P([g]_+), P([-g]_+)),$

where we denote $[g]_+ := max(g, 0)$.

Definition (F)

A weight vector $g \in K_0(\text{proj}-J)$ is called μ -supported if the cokernel of a general presentation in PHom(g) is supported only on mutable vertices. Let $G(\Delta, W)$ be the set of all μ -supported vectors in $K_0(\text{proj}-J)$.

General Presentations

Similar as the quiver representations, we can consider the projective presentations for any finite-dimensional algebras. We denote $P(\beta) := \bigoplus_{i \in \Delta_0} \beta(i)P_i$. The presentation space of weight $g \in \mathbb{Z}^{\Delta_0}$ is the space

 $PHom(g) := Hom(P([g]_+), P([-g]_+)),$

where we denote $[g]_+ := max(g, 0)$.

Definition (F)

A weight vector $g \in K_0(\text{proj}-J)$ is called μ -supported if the cokernel of a general presentation in PHom(g) is supported only on mutable vertices. Let $G(\Delta, W)$ be the set of all μ -supported vectors in $K_0(\text{proj}-J)$.

The Cluster Model from QP

Definition (Dupont etc)

We define the generic character C_{gen} : $G(\Delta, W) \rightarrow \mathbb{Z}(\mathbf{x})$ by

$$\mathcal{C}_{ ext{gen}}(\mathsf{g}) = \mathsf{x}^{\mathsf{g}} \sum_{\mathsf{e}} \chi \big(\operatorname{\mathsf{Gr}}^{\mathsf{e}}(\operatorname{\mathsf{Coker}}(\mathsf{g})) \big) \mathsf{y}^{\mathsf{e}},$$

where $Gr^{e}(M)$ is the variety parameterizing e-dimensional quotient representations of M, and $\chi(-)$ is the topological Euler-characteristic. It is known that $C_{W}(g)$ is an element in $\overline{C}(\Delta)$.

Definition

We say that an IQP (Δ, W) is a cluster model if C_{gen} maps $G(\Delta, W)$ onto a basis of $\overline{\mathcal{C}}(\Delta)$.

The Cluster Model from QP

Definition (Dupont etc)

We define the generic character C_{gen} : $G(\Delta, W) \to \mathbb{Z}(\mathbf{x})$ by

$$\mathcal{C}_{ ext{gen}}(\mathsf{g}) = \mathsf{x}^{\mathsf{g}} \sum_{\mathsf{e}} \chi \big(\operatorname{\mathsf{Gr}}^{\mathsf{e}}(\operatorname{\mathsf{Coker}}(\mathsf{g})) \big) \mathsf{y}^{\mathsf{e}},$$

where $Gr^{e}(M)$ is the variety parameterizing e-dimensional quotient representations of M, and $\chi(-)$ is the topological Euler-characteristic. It is known that $C_{W}(g)$ is an element in $\overline{C}(\Delta)$.

Definition

We say that an IQP (Δ, W) is a cluster model if C_{gen} maps $G(\Delta, W)$ onto a basis of $\overline{\mathcal{C}}(\Delta)$.

The Cluster Model from QP

Definition (Dupont etc)

We define the generic character C_{gen} : $G(\Delta, W) \to \mathbb{Z}(\mathbf{x})$ by

$$\mathcal{C}_{ ext{gen}}(\mathsf{g}) = \mathsf{x}^{\mathsf{g}} \sum_{\mathsf{e}} \chi \big(\operatorname{\mathsf{Gr}}^{\mathsf{e}}(\operatorname{\mathsf{Coker}}(\mathsf{g})) \big) \mathsf{y}^{\mathsf{e}},$$

where $Gr^{e}(M)$ is the variety parameterizing e-dimensional quotient representations of M, and $\chi(-)$ is the topological Euler-characteristic. It is known that $C_{W}(g)$ is an element in $\overline{C}(\Delta)$.

Definition

We say that an IQP (Δ, W) is a cluster model if C_{gen} maps $G(\Delta, W)$ onto a basis of $\overline{C}(\Delta)$.

Definition

We say that a (frozen or mutable) vertex e can be *optimized* in Δ if there is a sequence of mutations away from e making e into a sink or source of Δ (possibly after deleting arrows between frozen vertices).

Theorem (F-Weyman)

Let \widetilde{W} be any potential on $\widetilde{\Delta}$ such that its restriction on Δ is W. Suppose that $B(\Delta)$ has full rank, and each vertex in \mathbf{e} can be optimized in $(\widetilde{\Delta}, \widetilde{W})$. If (Δ, W) is a (polyhedral) cluster model, then so is $(\widetilde{\Delta}, \widetilde{W})$.

Definition

We say that a (frozen or mutable) vertex e can be *optimized* in Δ if there is a sequence of mutations away from e making e into a sink or source of Δ (possibly after deleting arrows between frozen vertices).

Theorem (F-Weyman)

Let \widetilde{W} be any potential on $\widetilde{\Delta}$ such that its restriction on Δ is W. Suppose that $B(\Delta)$ has full rank, and each vertex in \mathbf{e} can be optimized in $(\widetilde{\Delta}, \widetilde{W})$. If (Δ, W) is a (polyhedral) cluster model, then so is $(\widetilde{\Delta}, \widetilde{W})$.

$(\overline{\diamondsuit}_{\ell}^{m}, \overline{W}_{\ell}^{m})$ is a Polyhedral Cluster Model

Using the above theorem, we can reduce the QP $(\overline{\Diamond}_{\ell}^{m}, \overline{W}_{\ell}^{m})$ to a polyhedral cluster model.

Theorem (F)

There is a rigid potential \overline{W}_{ℓ}^{m} on $\overline{\Diamond}_{\ell}^{m}$ such that $\overline{\mathcal{C}}(\overline{\Diamond}_{\ell}^{m}, \overline{s}_{\ell}^{m})$ has a basis parametrized by μ -supported g-vectors, which lie in a polyhedral cone G_{ℓ}^{m} .

So to compute each $g_{\mu,\nu}^{\lambda}$ we only need to count lattice points in at most $\ell(\lambda)$! fibre polytopes inside the g-vector cone.

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ う へ ()

 $(\overline{\Diamond}_{\ell}^{m}, \overline{W}_{\ell}^{m})$ is a Polyhedral Cluster Model

Using the above theorem, we can reduce the QP $(\overline{\Diamond}_{\ell}^{m}, \overline{W}_{\ell}^{m})$ to a polyhedral cluster model.

Theorem (F)

There is a rigid potential \overline{W}_{ℓ}^{m} on $\overline{\Diamond}_{\ell}^{m}$ such that $\overline{\mathcal{C}}(\overline{\Diamond}_{\ell}^{m}, \overline{\mathbf{s}}_{\ell}^{m})$ has a basis parametrized by μ -supported g-vectors, which lie in a polyhedral cone G_{ℓ}^{m} .

So to compute each $g_{\mu,\nu}^{\lambda}$ we only need to count lattice points in at most $\ell(\lambda)$! fibre polytopes inside the g-vector cone.

 $(\overline{\diamondsuit}_{\ell}^{m}, \overline{W}_{\ell}^{m})$ is a Polyhedral Cluster Model

Using the above theorem, we can reduce the QP $(\overline{\Diamond}_{\ell}^{m}, \overline{W}_{\ell}^{m})$ to a polyhedral cluster model.

Theorem (F)

There is a rigid potential \overline{W}_{ℓ}^{m} on $\overline{\Diamond}_{\ell}^{m}$ such that $\overline{\mathcal{C}}(\overline{\Diamond}_{\ell}^{m}, \overline{s}_{\ell}^{m})$ has a basis parametrized by μ -supported g-vectors, which lie in a polyhedral cone G_{ℓ}^{m} .

So to compute each $g_{\mu,\nu}^{\lambda}$ we only need to count lattice points in at most $\ell(\lambda)$! fibre polytopes inside the g-vector cone.

Computing Kronecker Coefficients

Theorem (F)

Let μ, ν (resp. λ) be partitions of length $\leq \ell$ (resp. $\leq m$). Then

$$g_{\mu,
u}^{\lambda} = \sum_{\omega\in\mathfrak{S}_m(\lambda)} \mathsf{sgn}(\omega) \Big| \mathsf{G}_\ell^m(\mu,
u,\lambda^\omega)\cap\mathbb{Z}^{(\overline{\Diamond}_\ell^m)_0} \Big|.$$

The polyhedral cone G^m_ℓ is described by the tropical polynomial.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computing Kronecker Coefficients

Theorem (F)

Let μ, ν (resp. λ) be partitions of length $\leq \ell$ (resp. \leq m). Then

$$g_{\mu,
u}^{\lambda} = \sum_{\omega\in\mathfrak{S}_m(\lambda)} \mathrm{sgn}(\omega) \Big| \mathsf{G}_\ell^m(\mu,
u,\lambda^\omega)\cap\mathbb{Z}^{(\overline{\Diamond}_\ell^m)_0} \Big|.$$

The polyhedral cone G_{ℓ}^m is described by the tropical polynomial.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Tropical F-polynomials

The μ -supported condition is given by

```
Hom(g, T_v) = 0, (v frozen)
```

where T_v is the boundary representation associated to v. Theorem (F) If M is negative reachable, then for any $\delta \in \mathbb{Z}^{\Delta_0}$ we have that

$$f_M(-g) = \dim \operatorname{Hom}(g, M),$$

where f_M is the tropical polynomial of M:

$$g \mapsto \max_{L \hookrightarrow M} g(\underline{\dim} L).$$

The polytope G_{ℓ}^m has a hyperplane presentation:

$$Hg \ge 0, \quad g \in \mathbb{Z}^{(\overline{\Diamond}_l^m)_0}$$

where rows of H are exactly the dimension vectors of subrepresentations of T_v 's for all frozen v.

For each frozen vertex v, we define a boundary representation T_v by injective presentations. Here, instead, we give a concrete description using paths. For any path p, we can associate the (uniserial) path module. If v is a frozen vertex on the last diamond, then T_v is the path module associated to a path p_v . If v = n is an extended frozen vertex, then T_n is the path module associated to the *n*-th diamond diagonal.

The polytope G_{ℓ}^m has a hyperplane presentation:

$$Hg \ge 0, \quad g \in \mathbb{Z}^{(\overline{\Diamond}_I^m)_0}$$

where rows of H are exactly the dimension vectors of subrepresentations of T_v 's for all frozen v.

For each frozen vertex v, we define a boundary representation T_v by injective presentations. Here, instead, we give a concrete description using paths. For any path p, we can associate the (uniserial) path module. If v is a frozen vertex on the last diamond, then T_v is the path module associated to a path p_v . If v = n is an extended frozen vertex, then T_n is the path module associated to the *n*-th diamond diagonal.

The polytope G_{ℓ}^m has a hyperplane presentation:

$$Hg \ge 0, \quad g \in \mathbb{Z}^{(\overline{\Diamond}_I^m)_0}$$

where rows of H are exactly the dimension vectors of subrepresentations of T_v 's for all frozen v.

For each frozen vertex v, we define a boundary representation T_v by injective presentations. Here, instead, we give a concrete description using paths. For any path p, we can associate the (uniserial) path module. If v is a frozen vertex on the last diamond, then T_v is the path module associated to a path p_v . If v = n is an extended frozen vertex, then T_n is the path module associated to the *n*-th diamond diagonal.

The polytope G_{ℓ}^m has a hyperplane presentation:

$$Hg \ge 0, \quad g \in \mathbb{Z}^{(\overline{\Diamond}_I^m)_0}$$

where rows of H are exactly the dimension vectors of subrepresentations of T_v 's for all frozen v.

For each frozen vertex v, we define a boundary representation T_v by injective presentations. Here, instead, we give a concrete description using paths. For any path p, we can associate the (uniserial) path module. If v is a frozen vertex on the last diamond, then T_v is the path module associated to a path p_v . If v = n is an extended frozen vertex, then T_n is the path module associated to the *n*-th diamond diagonal.

How a typical p_v looks like?

Here is a picture for such a path p_v (when $\ell = 5$ and m = 4).

The explicit *H*-matrix for ($\ell = m = 3, 4, 5$) can be downloaded from my web page: https://sites.google.com/a/umich.edu/jiarui/research/tensorproduct-multiplicities/symmetric-groups I hope that the full implementation can be available on SAGE soon.
Thank you!

Time for questions and comments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで