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The Multiple Incarnation of Kronecker Coefficients

1. Tensor product multiplicity of representations of symmetric
groups;

2. Inner plethysm of Schur functions;

3. Corresponding representations of general linear groups.
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Tenor Multiplicity of Representations of Symmetric Groups

Let Sλ be the irreducible complex representation of Sn. The
Kronecker coefficients gλµ,ν are the tensor product multiplicities:

Sµ ⊗ Sν ∼=
⊕
λ

gλµ,νSλ.

cf. Littlewood-Richardson coefficients

(Sµ ⊗ Sν) ↑S|λ|S|µ|×S|ν|
∼=
⊕
λ

cλµ,νSλ.
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Inner Plethysm
Let Sλ(V ) be the irreducible complex representation of GL(V ).
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Some Algorithms

1. Character table

gλ,µ,ν =
1

n!

∑
σ∈Sn

χλ(σ)χµ(σ)χν(σ).

2. Dvir’s recursive algorithm (1993)
3. Counting lattice points (in `(λ)!`(µ)!`(ν)! polytopes) (2008)∏

i ,j ,k

1

1− xiyjzk
=
∑
λ,µ,ν

gλ,µ,νsλ(x)sµ(y)sν(z).
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The Role in the Geometric Complexity Theory

The Geometric Complexity Theory (GCT) is a research program in
computational complexity theory proposed by K. Mulmuley and M.
Sohoni to attack the famous open problem in computer science
whether P = NP by showing that the complexity class P is not
equal to the complexity class NP.

It is known computing Kronecker coefficients is # P-hard, but on
the other hand computing Littlewood-Richardson coefficients is #
P-complete. There are polynomial time (in `) algorithm for
computing Littlewood-Richardson coefficients.



The Role in the Geometric Complexity Theory

The Geometric Complexity Theory (GCT) is a research program in
computational complexity theory proposed by K. Mulmuley and M.
Sohoni to attack the famous open problem in computer science
whether P = NP by showing that the complexity class P is not
equal to the complexity class NP.

It is known computing Kronecker coefficients is # P-hard, but on
the other hand computing Littlewood-Richardson coefficients is #
P-complete. There are polynomial time (in `) algorithm for
computing Littlewood-Richardson coefficients.



The Role in the Geometric Complexity Theory

The Geometric Complexity Theory (GCT) is a research program in
computational complexity theory proposed by K. Mulmuley and M.
Sohoni to attack the famous open problem in computer science
whether P = NP by showing that the complexity class P is not
equal to the complexity class NP.

It is known computing Kronecker coefficients is # P-hard, but on
the other hand computing Littlewood-Richardson coefficients is #
P-complete. There are polynomial time (in `) algorithm for
computing Littlewood-Richardson coefficients.



Flagged Kronecker Quivers

Let Km
`,` be the flagged Kronecker quiver

1 // 2 // · · · // ` m arrows
*4 ` // · · · // 2 // 1

and β` be the dimension vector defined by β`(i) = |i |. Consider
the product of special linear group SLβ` acting naturally on the
quiver representation space Repβ`(Km

`,`).

Repβ`(Km
`,`) :=

l−1⊕
i=1

(
Hom(V−i ,V−(i+1))⊕ Hom(Vi+1,Vi )

)
⊕Hom(V−l ,Vl)⊗W .
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Semi-invariants of Flagged Kronecker Quivers

Definition
The semi-invariant ring SIβ`(Km

`,`) is by definition equal to

C[Repβ`(Km
`,`)]SLβ` .

The semi-invariant ring SIβ`(Km
`,`) is graded by a weight σ ∈ Z2`

and a weight λ of T ⊂ GL(W ):

SIβ`(Km
`,`) =

⊕
σ,λ

SIβ`(Km
`,`)σ,λ.

Here

SIβ`(Km
`,`)σ,λ = {f ∈ C[Repβ`(Km

`,`)] |(g , t) · f = χσ(g)tλf

∀g ∈ GLβ` , t ∈ T}.
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Kronecker Coefficients via Semi-invariant Rings

For any pair of partitions µ and ν of length no greater than `, we
can associate a weight vector σ(µ, ν) ∈ ZKm

`,` .

Theorem (F)

Let (µ, ν, λ) be a triple of partitions of length no greater than `, `
and m respectively, then

gλµ,ν =
∑
ω∈Sm

sgn(ω) dim SIβ`(Km
`,`)σ(µ,ν),λω ,

where λω is the weight defined by (λω)(i) = λ(i)− i + ω(i).
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Upper Cluster Algebra

Let L(x) be the Laurent polynomial algebra in cluster x which is
polynomial in coefficient variables. The upper cluster algebra
C(∆, x) is the intersection of all L(x′) where x′ is a cluster.

C(∆, x) :=
⋂

(∆′,x′)∼(∆,x)

L(x′).

By the Laurent Phenomenon, it contains the cluster algebra
associated to (∆, x).
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The Hive Quivers

Here is a hive quiver ∆` (` = 5).
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Quivers from Gluing Oriented Triangles
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Gluing m − 1 Diamond Quivers

Let ♦m
` be quiver obtained by inconsistently gluing the m − 1

diamond quivers along the edges with the same label. Note that
the first one has two edges glued together.
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Example: gluing a single diamond quiver

By definition, the quiver of the first diamond after gluing the edge
1 looks like (when ` = 5)
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Extending ♦m
`

We insert one frozen vertices n and three arrows to each n-th
diamond as shown below, and get a quiver denoted by ♦

m
` .
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The semi-invariant rings are upper cluster algebras

Theorem (F)

For any `,m ≥ 2, the semi-invariant ring SIβ`(Km
`,`) is isomorphic

to the graded upper cluster algebra C(♦
m
` , s

m
` ;σm

` ). Here, each
cluster variable in sm` is a Schofield’s semi-invariant.



Category of Quiver Representations

The category of representations of a quiver without oriented cycles
is abelian, Krull-Schimdt, having enough projective and injective
objects.

The indecomposable projective representations Pi are in bijection
with the vertices of Q. The vector space Pi (j) is spanned by all
paths from i to j .
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Schofield’s Semi-invariants

Let Q be a quiver without oriented cycles. Take a projective
presentation f , that is, f is an element in HomQ(P1,P0). We
apply HomQ(−,W ) to f and obtain

HomQ(P0,W )
f (W )−−−→ HomQ(P1,W ).

We define a polynomial function sf on Repβ(Q) by

sf (W ) = det(f (W )).

In this definition, we ask dim HomQ(P0,W ) = dim HomQ(P1,W ).
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How a typical sm
` looks like?

Let f̃ n
i ,j be the following presentation for n = 2r + 2

Pi+j ⊕ rP`
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. . .

...
...

...
. . .

. . .
. . . 0

0 0 · · · 0 n − 4 n − 3
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P−i ⊕ P−j ⊕ rP−`

and the following one for n = 2r + 1

Pi+j ⊕ rP`
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Why?
It is known (F) semi-invariant rings of the triple flag quivers T`

1 // 2 // · · · // `− 1

%%
` // · · · // 2 // 1

1 // 2 // · · · // `− 1

99

are upper cluster algebras with seeds given by the hive quivers ∆`.
Let

Rm
`,` =

l−1⊕
i=1

(
Hom(V−i ,V−(i+1))⊕ Hom(Vi+1,Vi )

)
⊕ (SL`⊗W ) .

There are natural maps from an open subset U of Rm
`,`//SLβ` to an

open subset of Repβ`′(T`)//SLβ`′ . Our seed is obtained by gluing
these seeds from hives according to certain rule.
In the end, we add some coefficients to pass from Rm

`,` to the
Repβ`(Km

`,`).
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Quivers with Potentials

The upper cluster algebra can be studied by the representation
theory of quivers with potentials (Derksen-Weyman-Zelevinsky).

A potential P on a quiver ∆ is a linear combination of oriented
cycles of ∆. The Jacobian ideal ∂P is the two-sided (closed) ideal

in Ĉ∆ generated by all “noncommutative partial derivatives” ∂aP.
The Jacobian algebra J(∆,P) is the quotient algebra Ĉ∆/∂P.

The quiver mutation can be “lifted” to the mutation of quivers
with potentials [DWZ].
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The quiver mutation can be “lifted” to the mutation of quivers
with potentials [DWZ].
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Example

Consider the quiver
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@@ with potential P = cba− cb′a′.

Then the Jacobian ideal is generated by

∂aP = cb, ∂a′P = cb′,

∂bP = ac, ∂b′P = a′c ,

∂cP = ba− b′a′.
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General Presentations

Similar as the quiver representations, we can consider the
projective presentations for any finite-dimensional algebras.
We denote P(β) :=

⊕
i∈∆0

β(i)Pi . The presentation space of

weight g ∈ Z∆0 is the space

PHom(g) := Hom (P([g]+),P([−g]+)) ,

where we denote [g]+ := max(g, 0).

Definition (F)

A weight vector g ∈ K0(proj -J) is called µ-supported if the
cokernel of a general presentation in PHom(g) is supported only on
mutable vertices. Let G (∆,W ) be the set of all µ-supported
vectors in K0(proj -J).
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The Cluster Model from QP

Definition (Dupont etc)

We define the generic character Cgen : G (∆,W )→ Z(x) by

Cgen(g) = xg
∑

e

χ
(

Gre(Coker(g))
)
ye,

where Gre(M) is the variety parameterizing e-dimensional quotient
representations of M, and χ(−) is the topological Euler-characteristic.

It is known that CW (g) is an element in C(∆).

Definition
We say that an IQP (∆,W ) is a cluster model if Cgen maps
G (∆,W ) onto a basis of C(∆).
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Definition
We say that a (frozen or mutable) vertex e can be optimized in ∆
if there is a sequence of mutations away from e making e into a
sink or source of ∆ (possibly after deleting arrows between frozen
vertices).

Theorem (F-Weyman)

Let W̃ be any potential on ∆̃ such that its restriction on ∆ is W .
Suppose that B(∆) has full rank, and each vertex in e can be

optimized in (∆̃, W̃ ). If (∆,W ) is a (polyhedral) cluster model,

then so is (∆̃, W̃ ).
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(♦
m
` ,W

m
` ) is a Polyhedral Cluster Model

Using the above theorem, we can reduce the QP (♦
m
` ,W

m
` ) to a

polyhedral cluster model.

Theorem (F)

There is a rigid potential W
m
` on ♦

m
` such that C(♦

m
` , s

m
` ) has a

basis parametrized by µ-supported g-vectors, which lie in a
polyhedral cone Gm

` .

So to compute each gλµ,ν we only need to count lattice points in at
most `(λ)! fibre polytopes inside the g-vector cone.
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Computing Kronecker Coefficients

Theorem (F)

Let µ, ν (resp. λ) be partitions of length ≤ ` (resp. ≤ m). Then

gλµ,ν =
∑

ω∈Sm(λ)

sgn(ω)
∣∣∣Gm
` (µ, ν, λω) ∩ Z(♦

m
` )0

∣∣∣.
The polyhedral cone Gm

` is described by the tropical polynomial.
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The Tropical F -polynomials

The µ-supported condition is given by

Hom(g,Tv ) = 0, (v frozen)

where Tv is the boundary representation associated to v .

Theorem (F)

If M is negative reachable, then for any δ ∈ Z∆0 we have that

fM(−g) = dim Hom(g,M),

where fM is the tropical polynomial of M:

g 7→ max
L↪→M

g(dimL).



The Boundary Representations of (♦
m
` ,W

m
` )

The polytope Gm
` has a hyperplane presentation:

Hg ≥ 0, g ∈ Z(♦
m
l )0

where rows of H are exactly the dimension vectors of
subrepresentations of Tv ’s for all frozen v .

For each frozen vertex v , we define a boundary representation
Tv by injective presentations. Here, instead, we give a concrete
description using paths. For any path p, we can associate the
(uniserial) path module. If v is a frozen vertex on the last
diamond, then Tv is the path module associated to a path pv . If
v = n is an extended frozen vertex, then Tn is the path module
associated to the n-th diamond diagonal.
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How a typical pv looks like?

Here is a picture for such a path pv (when ` = 5 and m = 4).
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The explicit H-matrix for (` = m = 3, 4, 5) can be downloaded
from my web page:
https://sites.google.com/a/umich.edu/jiarui/research/tensor-
product-multiplicities/symmetric-groups
I hope that the full implementation can be available on SAGE soon.



Thank you!

Time for
questions and comments


