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Goal

We will discuss the following three issues and some related
topics via the method of Newton polytopes.

For a cluster algebra, it is difficult to give a formula
expression of the Laurent expansion of a cluster variable in
an initial cluster. So, as an alternative, we want to give a
recurrence formula.

Positivity problem of a cluster variable under Laurent
expansion in an initial cluster for a TSSS cluster algebra.

Give a so-called polytope basis for a (upper) cluster
algebra as a generalization of Greedy basis for a cluster
algebra of rank 2
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Preliminaries

Let (P,⊕, ·) be a semifield, and F be the field of rational
functions in n independent variables with coefficients in QP.

Definition
A seed in F is a triple Σ = (X ,Y ,B) such that

X = (x1, x2, · · · , xn) is a n-tuple satisfying that the
elements form a free generating set of F ;
Y = (y1, y2, · · · , yn) is a n-tuple of elements of P;
B is an n × n totally sign skew-symmetric (TSSS) integer
matrix, i.e. every matrix (b′ij) mutation equivalent to B
satisfying sign(b′ij) = −sign(b′ji).



Preliminaries

Definition
For any seed Σ = (X ,Y ,B) in F and k ∈ [1,n], we say that
Σ′ = (X ′,Y ′,B′) is obtained from Σ by a mutation in direction k
if

xj
′ =

 yk
n∏

i=1
x
[bik ]+
i +

n∏
i=1

x
[−bik ]+
i

(yk
⊕

1)xk
j = k ;

xj otherwise.

yj
′ =

{
y−1

k j = k ;

yjy
[bkj ]+
k (yk

⊕
1)−bkj otherwise.

bij
′ =

{
−bij i = k or j = k ;
bij + sgn(bik )[bikbkj ]+ otherwise.

In this case we denote Σ′ = µk (Σ).
Then Σ′ is also a seed and the seed mutation µk is an
involution.



Preliminaries

Let Tn be an n-regular tree such that n edges emanating from
the same vertex are labeled differently by [1,n].

The seed assigned to vertex t is denoted by Σt = (Xt ,Yt ,Bt )
with

Xt = (x1;t , x2;t · · · , xn;t ),Yt = (y1;t , y2;t · · · , yn;t )

and Bt = (bt
ij)i,j∈[1,n].

Definition
Let S = {xi;t ∈ F | i ∈ [1,n], t ∈ Tn}. The cluster algebra A
associated with the family of clusters on Tn is the ZP-algebra
generated by S.



Preliminaries

Definition
A tropical semifield Trop(u1,u2, · · · ,ul) is a free abelian
multiplicative group generated by u1,u2, · · · ,ul with
addition defined by

l∏
j=1

uaj
j

⊕ l∏
j=1

ubj
j =

l∏
j=1

umin(aj ,bj )

j .

A cluster algebra is said to have principal coefficients at
a vertex t0 if P = Trop(y1, y2, · · · , yn) and
Yt0 = (y1, y2, · · · , yn).



Preliminaries

From vertex t0 to vertex t , by Laurent phenomenon, we can
write as:

xl;t =
P t0

l;t
n∏

i=1
x

d
t0
i (xl;t )

i;t0

where

The vector d t0
l;t = (d t0

1 (xl;t ),d
t0
2 (xl;t ), · · · ,d t0

n (xl;t ))T is called
the d-vector of xl;t with respect to cluster Xt0 .
Moreover, if A has principal coefficients at t0, then
P t0

l;t ∈ Z[x1,t0 , · · · , xn,t0 ; y1,t0 , · · · , yn,t0 ].
F t0

l;t = P t0
l;t |xi;t0

=1,∀i∈[1,n] is a polynomial in y1,t0 , · · · , yn,t0
called the F-polynomial of xl;t with respect to Xt0 .



Preliminaries

Define Zn-grading on A:

deg(xi;t0) = ei , deg(yj;t0) = −b0
j .

Then

xl;t =
P t0

l;t
n∏

i=1
x

d
t0
i (xl;t )

i;t0

.

is homogeneous on Zn-grading.

Define the g-vector of xl;t :

gt0
l;t := deg(xl;t )
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Preliminaries

Theorem [FZ4]

For any cluster algebra A and any vertices t and t ′ in Tn, a
cluster variable xl;t can be expressed by

xl;t =
F t ′

l;t |F (ŷ1;t ′ , · · · , ŷn;t ′)

F t ′
l;t |P(y1;t ′ , · · · , yn;t ′)

n∏
i=1

xgi
i;t ′ ,

where ŷj;t ′ = yj;t ′
n∏

i=1
x

b′ij
i;t ′ , and gt ′

l;t = (g1, · · · ,gn)T .

Denote Ŷt = {ŷ1;t , · · · , ŷn;t} for any t ∈ Tn



Preliminaries
U>0(Σt ) := NP[X±1

t ]
⋂

NP[X±1
t1 ]

⋂
· · ·
⋂

NP[X±1
tn ] ⊆ U(Σt ),

U+(Σt ) := {f ∈ U>0(Σt ) | Lt (f ) ∈ N[Yt ][X±1
t ]

and Lti (f ) ∈ N[Yti ][X
±1
ti ],∀i ∈ [1,n]},

where Lt (−) is defined to make Lt (ρh) to be the Laurent
expression in the cluster algebra over ZTrop(Yt ).

U+
>0(Σt ) := U+(Σt )

⋂
U>0(Σt1)

⋂
· · ·
⋂
U>0(Σtn ),

where ti ∈ Tn is the vertex connected to t ∈ Tn by an edge
labeled i .

For t ′ ∈ Tn, h ∈ Zn and any homogeneous Laurent polynomial
f ∈ Z[Yt ′ ][X±1

t ′ ] ⊆ ZTrop(Yt ′)[X±1
t ′ ],

denote by coX h
t′

(f ) the coefficient of the Laurent monomial X h
t ′ in

f , i.e. if the coefficient is a, then

coX h
t′

(f ) = a.



Newton polytope

Any Laurent monomial aY v , where a ∈ Z, corresponds to a
vector v ∈ Zn, called a point with weight.

The support of a Laurent polynomial F is a set consisting
of N-vectors associated to summand monomials of F .
The Newton polytope N of a Laurent polynomial F is the
convex hull of the support of F .
The support of a Laurent polynomial F is saturated(�Ú
�) if any lattice point in the Newton polytope N is
associated to a summand monomial of F .



The relation between Newton polytopes and Laurent
polynomials

Given a vector h ∈ Zn and a cluster algebra A with principal
coefficients, there is a bijectionµ

{homogeneous Laurent polynomials in Z[Y ][X±1] with grade h}
ṽ←→ {Polytopes with weights}

summand aŶ pX h 7→ (lattice) point p with weight a

That is, we have

ṽ(f (Ŷ )X h) = Nh
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Outline of the idea of the polytope function ρh

associated to h ∈ Zn

As a generalization of cluster monomials, for h ∈ Zn, we need
to construct a function ρh to include X h as a summand and to
be a homogeneous Laurent polynomial in the cluster Xt for any
t ∈ Tn with coefficients in N[Y ].

Such global conditions are too complicated to deal with directly,
so we first try to construct a such function in local conditions for
any given vertex t0 ∈ Tn and those vertices around it, and then
construct ρh in global conditions.

Based on the above idea, ρh can be constructed in the following
three steps.
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(i) In general, X h can not be expressed as a Laurent
polynomial with positive coefficients in any cluster. For
example, when hk < 0 for some k ∈ [1,n], the expression of X h

in Xtk equals to (
Mk ;tk
xk ;tk

)hk
∏
i 6=k

xhi
i;tk

=
x
−hk
k ;tk

∏
i 6=k

x
hi
i;tk

M
−hk
k ;tk

, which is not a

Laurent polynomial in Xtk , where tk ∈ Tn is the vertex
connected to t0 by an edge labeled k .

Our method is to add some Laurent polynomial in X to make
the summation also a Laurent polynomial in Xtk . Concretely, we
find (ŷk + 1)−hk X h = xhk

k M−hk
k ;tk

∏
i 6=k

xhi+[−bik ]+hk
i having X h as a

summand, which can be expressed as a Laurent polynomial in
Xtk .
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(ii) If there is k ′ ∈ [1,n] such that (ŷk + 1)−hk X h can not be
expressed as a Laurent polynomial in Xtk′ , then there is a
summand x−a

k ′ p, where a ∈ Z>0 and p is some Laurent
monomial in Xtk′\{xk ′}.

Again we need to find a Laurent polynomial
x−a

k ′ Ma
k ′,tk′

q ∈ N[Y ][X±1] which has x−a
k ′ p as a summand, where

q is a Laurent monomial in Xtk′\{xk ′}.

In the above process we call x−a
k Ma

k ,tk
q a complement of x−a

k p
in direction k .
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(iii) Then we focus on the minimal Laurent polynomial having
both (ŷk + 1)−hk X h and x−a

k ′ Ma
k ′,tk′

q as summands and look for
k ′′ ∈ [1,n] if it exists such that the minimal Laurent polynomial
can not be expressed as a Laurent polynomial in Xtk′′ to repeat
step (ii) for k ′′.

Such construction keeps on until the final (formal) Laurent
polynomial can be expressed as a (formal) Laurent polynomial
in any Xtk for k ∈ [1,n], and we denote it by ρh.

ρh is called a polytope function.

Note that ρh is a Laurent polynomial if the construction ends in
finitely many steps, otherwise it is a formal Laurent polynomial.



Construct ρh by induction via Newton polytopes

We find a decomposition

xiρh =
∑
w ,α

cw ,αY wρα

for ρh, which simplifies our construction by induction on ρα
induced by sub-polytopes indexed by α.

During the construction of a polytope function ρα, the
sub-polytope Nα associated to ρα is constructed with the order
induced by its sub-polytopes.

Thus, it is more convenient for us to construct and study ρh via
Nh.



Theorem 1

Let A be a cluster algebra having principal coefficients and
h ∈ Zn. Denote Nh as the polytope corresponding to ρh and let
H = {h ∈ Zn : ρh ∈ U+

>0(Σt0)}. Then,

(i) There is a unique indecomposable Laurent polynomial
ρh := ρt0

h in Û+
>0(Σt0) having X h as a summand.

(ii) ρh ∈ N[Yt ][[X±1
t ]] for any t ∈ Tn and it is indecomposable

universally positive. So, P = {ρh ∈ U(A)|h ∈ H} is independent
to the choice of the initial seed and contains all monomials in
{Xα

t | α ∈ Nn, t ∈ Tn}.

(iii) ρh|xi→1 is a polynomial in Z[Y ] having a unique maximal
term and constant term, and the coefficients of them are both 1.

Indeed, ρh|xi→1 can be realized as a generalization of
F -polynomial for h ∈ Zn. When h is a g-vector, it is just the
usual F -polynomial.



Theorem 2
Let A be a cluster algebra having principal coefficients and
h ∈ Zn. Then,

(i) For h ∈ Zn such that ρt0
h ∈ U

+
>0(Σ) and any k ∈ [1,n], there is

htk = h − 2hkek + hk [bk ]+ + [−hk ]+bk (1)

such that Ltk (ρt0
h ) = ρtk

htk
, where tk ∈ Tn is the vertex connected

to t0 by an edge labeled k .

(ii) Let S be a r -dimensional face of Nh. Then there are a
cluster algebra A′S with principal coefficients of rank r , a vector
h′ ∈ Zr and an isomorphism τ from Nh′ to S with its induced
linear map τ̃ satisfying τ̃(ei) ∈ Nn for any i ∈ [1, r ].



In skew-symmetrizable case

Theorem
Let A be a skew-symmetrizable cluster algebra with principal
coefficients, h ∈ Zn such that Eh is finite and S be a
r -dimensional face of Nh. Let B′ be the initial exchange matrix
of the cluster algebra A′S related to S in the above theorem.

Then B′ = W
>

BW , where W = (τ̃(e1), · · · , τ̃(er )),
W = (τ(e1), · · · , τ(er )) are n × r integer matrices,

τ̃(ei) =
r∑

j=1
wjiej , τ(ei) =

r∑
j=1

dj
ds

wjiej as column vectors with

s 6= ∅ the label of the edge in S parallel to τ̃(ei) and

τ(ei) =
r∑

j=1
wjiej when the label is ∅.



Construction of ρh (Nh)
When A is a cluster algebra with principal coefficients of rank n
and h ∈ Zn. We can decompose Nh as a summation of smaller
polytopes:

Nh =
∑

Nαj [wj ]∈
⋃
l

U l
h

Nαj [wj ],

where U0
h = {Nh+ei} ∪

⋃
j
{Nιk ;hk+ιk ;0(wj )

(b>k )αj
[ιk ;0(wj)]} and U l

h is

iteratively determined to make ρh an indecomposable Laurent
polynomial ρh in U+

>0(Σt0).

Moreover in a cluster algebra over arbitrary semifield ZP, let
Fh = ρpr

h |xi→1,∀i∈[1,n]. Then,

ρh =
Fh|F (Ŷ )

Fh|P(Y )
X h ∈ NP[[X±1]].



Example of Construction of ρh (Nh) for rank 2

Denote by l(pq) the length of the segment connecting two
points p and q.

C̃ j
i ,


(

i
j

)
if i > 0;

0 if i < 0.

When A is a cluster algebra with principal coefficients of rank 2,

B =

(
0 b
−c 0

)
,

where b, c ∈ Z>0. For h = (h1,h2) ∈ Z2, Vh =
{(0,0), ([−h1]+,0]), (0, [−h2]+), ([−h1]+, [−h2 + c[−h1]+]+),
([−h1]+ − [[−h1]+ − b[c[−h1]+ − h2]+]+, [−h2 + c[−h1]+]+)}
while Eh is the set consisting of edges connecting points in Vh
and parallel to e1 or e2.



Example of Construction of ρh (Nh) for rank 2

For any point p0 = (u0, v0) in an arbitrary edge p1p2 in Eh with
p1,p2 ∈ Vh, define the weight cop0 = C̃ l(p0p2)

l(p1p2)
, and denote

m1(p0) =

{
cop0 , if u0 = −h1;

0, otherwise.

and

m2(p0) =

{
cop0 , if v0 = 0;

0, otherwise.



Example of Construction of ρh (Nh) for rank 2

For point p = (u, v) not in Eh, define cop inductively as follows:

cop = max{
[−h2+c[−h1]+]+−u∑

i=1
m1((u + i , v))C̃ i

−h1−bv ,

v∑
i=1

m2((u, v − i))C̃ i
−h2+cu}

m1(p) = cop −
[−h2+c[−h1]+]+−u∑

i=1

m1((u + i , v))C̃ i
−h1−bv ,

m2(p) = cop −
v∑

i=1

m2((u, v − i))C̃ i
−h2+cu.

Then, we denote by Nh the convex hull of the set
{p ∈ N2 | cop 6= 0}.



Cluster variables and polytopes

In particular, since ρei = xi , we can see that ρgl;t = xl;t ∈ P. So
cluster variables and their associated polytopes satisfy the
above results.

Theorem (Recurrence formula)
Let A be a TSSS cluster algebra having principal coefficients,
then xl;t = ρgl;t and Nl;t = Ngl;t . Following this, we have that

cop(Nl;t ) = cop(Ngl;t ) =
∑

Nhj′
[wj′ ]∈

⋃
r

U r
gl;t

cop(Nhj′
[wj ′ ]) (2)

and
xl;t = X gl;t

t0 (
∑

p∈Ngl;t

cop(Nl;t )Ŷ p). (3)



Positivity conjecture

In [FZ1], the positivity conjecture for cluster variables is
suggested, that is,

Conjecture [FZ1]
Every cluster variable of a cluster algebra A is a Laurent
polynomial in cluster variables from an initial cluster X with
positive coefficients.

So far, the recent advance on the positivity conjecture is the
proof in skew-symmetrizable case given in [GHKK]. For totally
sign-skew-symmetric cluster algebras, it was only proved in
acyclic case in [HL].



Positivity conjecture

As a harvest of this polytope method, a natural conclusion of
the above Theorem is the following corollary, which actually
completely confirms the positivity conjecture in the most
general case:

Corollary (Positivity for TSSS cluster algebras)

Let A be a TSSS cluster algebra with principal coefficients and
(X ,Y ,B) be its initial seed. Then every cluster variable in A is a
Laurent polynomial over N[Y ] in X .

Proof.
It follows from the fact that in the right-hand side of recurrence
formula (2), the coefficients of xl;t in (3) are always positive due
to our construction of Nh.



From g-vectors to F-polynomials

Let A be a TSSS cluster algebra having principal coefficients,
there is a bijective map

{non-initial g-vectors of A}
∼=−→ {non-initial F-polynomials of A}

gl;t 7→ ρgl;t |xi→1



From F-polynomials to d-vectors

∀k ∈ [1,n], we can write Pl;t as a sum of xk -homogeneous

polynomials Pl;t =
degk (Pl;t )∑
s=dk (xl;t )

xs
k Ps(k) +

dk (xl;t )−1∑
s=0

xs
k Mdk (xl;t )−s

k Ps(k),

where Mk = xkµk (xk ).

Define d̃egk (Pl;t ) = max{r | M r
k divides (Pl;t |xk→Mk )}.

Theorem
Let A be a TSSS cluster algebra having principal coefficients.
dk (xl;t ) = d̃egk (Pl;t ) = d̃egk (Pl;t |xk=0) ∈ N.
This means the positivity conjecture of d-vectors of a cluster
variable is always true.
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From F-polynomials to d-vectors

From [FZ4], we have

xl;t =
F t ′

l;t |F (ŷ1;t ′ , · · · , ŷn;t ′)

F t ′
l;t |P(y1;t ′ , · · · , yn;t ′)

n∏
i=1

xgi
i;t ′ ,

Then, Pl;t is the factor of Fl;t |F (ŷ1, ŷ2, · · · , ŷn) which is coprime
with xi , i ∈ [1,n] xi,t ′ .

Let A be a cluster algebra having principal coefficients, there is
a surjective map

{non-initial F-polynomials } � {positive d-vectors}

Fl;t 7→ Pl;t 7→ (d̃eg1(Pl;t |x1=0), · · · , d̃egn(Pl;t |xn=0))



From F-polynomials to d-vectors

Corollary
Let A be a cluster algebra with principal coefficients, xl;t , xl ′;t ′

be two non-initial cluster variables and Fl;t , Fl ′;t ′ the
F-polynomials associated to xl;t , xl ′;t ′ respectively. If Fl;t = Fl ′;t ′ ,
then xl;t = xl ′;t ′ .



Relation diagram

fcluster variablesg fg

polynomialsg fd

χ2

degree vector

χ1
let xi ! 1;
8i 2 [1; n]

'

denominator vector

θ1

θ2 η2

fF

vectorsg

vectorsg



Polytope basis

χ2 : {g − vectors} −→ {cluster variables}

gl;t 7→ ρgl;t = xl;t

The map χ2 can be generalized to Zn. Denote

P = {ρh ∈ NP[X±1] | h ∈ Zn}

Proposition
Let A be a cluster algebra.
(i) P is independent of the choice of the initial seed. Hence
P ⊆ U(A) and all elements in P are universally positive and
indecomposable.
(ii) P contains all cluster monomials with coefficient 1.



Polytope basis

Theorem
Let A be a cluster algebra with principal coefficients. Then P is
a strongly positive ZTrop(Y )-basis for the upper cluster algebra
U(A).

We would like to call P the polytope basis for U(A).

In rank 2 case, it is coincident to the greedy basis introduced in
[LLZ].

Thanks for your attention!


