Laurent recurrence formula, positivity and polytope basis on cluster algebras via Newton polytopes

Fang Li
(Zhejiang University)
Joint work with Jie Pan

Trends in Cluster Algebras 2022, Japan
Sept. 21, 2022—-Online (Zoom)

Goal

We will discuss the following three issues and some related topics via the method of Newton polytopes.

Goal

We will discuss the following three issues and some related topics via the method of Newton polytopes.

- For a cluster algebra, it is difficult to give a formula expression of the Laurent expansion of a cluster variable in an initial cluster. So, as an alternative, we want to give a recurrence formula.

Goal

We will discuss the following three issues and some related topics via the method of Newton polytopes.

- For a cluster algebra, it is difficult to give a formula expression of the Laurent expansion of a cluster variable in an initial cluster. So, as an alternative, we want to give a recurrence formula.
- Positivity problem of a cluster variable under Laurent expansion in an initial cluster for a TSSS cluster algebra.

Goal

We will discuss the following three issues and some related topics via the method of Newton polytopes.

- For a cluster algebra, it is difficult to give a formula expression of the Laurent expansion of a cluster variable in an initial cluster. So, as an alternative, we want to give a recurrence formula.
- Positivity problem of a cluster variable under Laurent expansion in an initial cluster for a TSSS cluster algebra.
- Give a so-called polytope basis for a (upper) cluster algebra as a generalization of Greedy basis for a cluster algebra of rank 2

References

> －K．Lee，L．Li，A．Zelevinsky，Greedy elements in rank 2 cluster algebras（2014）；
> －K．Lee，L．Li，R．Schiffler，Newton polytopes of rank 3 cluster variables（2019）．

References

- K.Lee, L.Li, A.Zelevinsky, Greedy elements in rank 2 cluster algebras (2014);

References

- K.Lee, L.Li, A.Zelevinsky, Greedy elements in rank 2 cluster algebras (2014);
- K.Lee, L.Li, R.Schiffler, Newton polytopes of rank 3 cluster variables (2019).

References

- K.Lee, L.Li, A.Zelevinsky, Greedy elements in rank 2 cluster algebras (2014);
- K.Lee, L.Li, R.Schiffler, Newton polytopes of rank 3 cluster variables (2019).
- Jiarui Fei, Combinatorics of F-polynomials, arXiv: 1909.10151; to appear in IMRN, 2022;

References

- K.Lee, L.Li, A.Zelevinsky, Greedy elements in rank 2 cluster algebras (2014);
- K.Lee, L.Li, R.Schiffler, Newton polytopes of rank 3 cluster variables (2019).
- Jiarui Fei, Combinatorics of F-polynomials, arXiv: 1909.10151; to appear in IMRN, 2022;
- F.Li and J.Pan, Recurrence formula, positivity and polytope basis in cluster algebras via Newton polytopes, arxiv:2201.01440v2.

Preliminaries

Let $(\mathbb{P}, \oplus, \cdot)$ be a semifield, and \mathcal{F} be the field of rational functions in n independent variables with coefficients in $\mathbb{Q P}$.

Definition

A seed in \mathcal{F} is a triple $\Sigma=(X, Y, B)$ such that

- $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a n-tuple satisfying that the elements form a free generating set of \mathcal{F};
- $Y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ is a n-tuple of elements of \mathbb{P};
- B is an $n \times n$ totally sign skew-symmetric (TSSS) integer matrix, i.e. every matrix ($b_{i j}^{\prime}$) mutation equivalent to B satisfying $\operatorname{sign}\left(b_{i j}^{\prime}\right)=-\operatorname{sign}\left(b_{j i}^{\prime}\right)$.

Preliminaries

Definition

For any seed $\Sigma=(X, Y, B)$ in \mathcal{F} and $k \in[1, n]$, we say that $\Sigma^{\prime}=\left(X^{\prime}, Y^{\prime}, B^{\prime}\right)$ is obtained from Σ by a mutation in direction k if

$$
\begin{aligned}
& \text { - } x_{j}^{\prime}= \begin{cases}\frac{y_{k} \prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}}+\prod_{i=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}}}{\left(y_{k} \oplus 1\right) x_{k}} & j=k ; \\
x_{j} & \text { otherwise. }\end{cases} \\
& \text { - } y_{j}^{\prime}= \begin{cases}y_{k}^{-1} & j=k ; \\
y_{j} y_{k}^{\left[b_{k}\right]_{+}}\left(y_{k} \oplus 1\right)^{-b_{k j}} & \text { otherwise. }\end{cases} \\
& \text { - } b_{i j}^{\prime}= \begin{cases}-b_{i j} & i=k \text { or } j=k ; \\
b_{i j}+\operatorname{sgn}\left(b_{i k}\right)\left[b_{i k} b_{k j}\right]_{+} & \text {otherwise. }\end{cases}
\end{aligned}
$$

In this case we denote $\Sigma^{\prime}=\mu_{k}(\Sigma)$.
Then Σ^{\prime} is also a seed and the seed mutation μ_{k} is an involution.

Preliminaries

Let \mathbb{T}_{n} be an n-regular tree such that n edges emanating from the same vertex are labeled differently by $[1, n]$.

The seed assigned to vertex t is denoted by $\Sigma_{t}=\left(X_{t}, Y_{t}, B_{t}\right)$ with

$$
\begin{gathered}
X_{t}=\left(x_{1 ; t}, x_{2 ; t} \cdots, x_{n ; t}\right), Y_{t}=\left(y_{1 ; t}, y_{2 ; t} \cdots, y_{n ; t}\right) \\
\text { and } B_{t}=\left(b_{i j}^{t}\right)_{i, j \in[1, n] .} .
\end{gathered}
$$

Definition

Let $\mathcal{S}=\left\{x_{i ; t} \in \mathcal{F} \mid i \in[1, n], t \in \mathbb{T}_{n}\right\}$. The cluster algebra \mathcal{A} associated with the family of clusters on \mathbb{T}_{n} is the $\mathbb{Z} \mathbb{P}$-algebra generated by \mathcal{S}.

Preliminaries

Definition

- A tropical semifield $\operatorname{Trop}\left(u_{1}, u_{2}, \cdots, u_{l}\right)$ is a free abelian multiplicative group generated by $u_{1}, u_{2}, \cdots, u_{l}$ with addition defined by

$$
\prod_{j=1}^{l} u_{j}^{a_{j}} \bigoplus \prod_{j=1}^{l} u_{j}^{b_{j}}=\prod_{j=1}^{l} u_{j}^{\min \left(a_{j}, b_{j}\right)}
$$

- A cluster algebra is said to have principal coefficients at a vertex t_{0} if $\mathbb{P}=\operatorname{Trop}\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ and $Y_{t_{0}}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$.

Preliminaries

From vertex t_{0} to vertex t, by Laurent phenomenon, we can write as:

$$
x_{l ; t}=\frac{P_{l ; t}^{t_{0}}}{\prod_{i=1}^{n} x_{i ; t_{0}}^{d_{0}^{t_{i}}\left(x_{l i t}\right)}}
$$

where

- The vector $d_{l ; t}^{t_{0}}=\left(d_{1}^{t_{0}}\left(x_{l ; t}\right), d_{2}^{t_{0}}\left(x_{l ; t}\right), \cdots, d_{n}^{t_{0}}\left(x_{l ; t}\right)\right)^{T}$ is called the d-vector of $x_{1 ; t}$ with respect to cluster $X_{t_{0}}$.
- Moreover, if \mathcal{A} has principal coefficients at t_{0}, then $P_{l ; t}^{t_{0}} \in \mathbb{Z}\left[x_{1, t_{0}}, \cdots, x_{n, t_{0}} ; y_{1, t_{0}}, \cdots, y_{n, t_{0}}\right]$.
$F_{l ; t}^{t_{0}}=\left.P_{l ; t}^{t_{0}}\right|_{i_{i, t_{0}}=1, \forall i \in[1, n]}$ is a polynomial in $y_{1, t_{0}}, \cdots, y_{n, t_{0}}$ called the F-polynomial of $x_{l ; t}$ with respect to $X_{t_{0}}$.

Preliminaries

- Define \mathbb{Z}^{n}-grading on \mathcal{A} :

$$
\operatorname{deg}\left(x_{i ; t_{0}}\right)=e_{i}, \quad \operatorname{deg}\left(y_{j ; t_{0}}\right)=-b_{j}^{0} .
$$

Then

$$
x_{l ; t}=\frac{P_{l ; t}^{t_{0}}}{\prod_{i=1}^{n} x_{i ; t_{0}}^{d_{0}^{t_{0}}\left(x_{i ; t}\right)}} .
$$

is homogeneous on \mathbb{Z}^{n}-grading.
Define the \mathbf{g}-vector of $x_{l ; t}$:

$$
g_{l ; t}^{t_{0}}:=\operatorname{deg}\left(x_{l ; t}\right)
$$

Preliminaries

Theorem [FZ4]

For any cluster algebra \mathcal{A} and any vertices t and t^{\prime} in \mathbb{T}_{n}, a cluster variable $x_{l ; t}$ can be expressed by

$$
x_{l ; t}=\frac{F_{l ; t}^{t^{\prime}} \mid \mathcal{F}\left(\hat{y}_{1 ; t^{\prime}}, \cdots, \hat{y}_{n ; t^{\prime}}\right)}{F_{l ; t}^{t^{\prime}} \mid \mathbb{P}\left(y_{1 ; t^{\prime}}, \cdots, y_{n ; t^{\prime}}\right)} \prod_{i=1}^{n} x_{i ; t^{\prime}}^{g_{i}}
$$

where $\hat{y}_{j ; t^{\prime}}=y_{j ; t^{\prime}} \prod_{i=1}^{n} x_{i ; t^{\prime}}^{b_{i j}^{\prime}}$, and $g_{l ; t}^{t^{\prime}}=\left(g_{1}, \cdots, g_{n}\right)^{T}$.
Denote $\hat{Y}_{t}=\left\{\hat{y}_{1 ; t}, \cdots, \hat{y}_{n ; t}\right\}$ for any $t \in \mathbb{T}_{n}$

Preliminaries

$$
\begin{gathered}
\mathcal{U}_{\geqslant 0}\left(\Sigma_{t}\right):=\mathbb{N} \mathbb{P}\left[X_{t}^{ \pm 1}\right] \bigcap \mathbb{N} \mathbb{P}\left[X_{t_{1}}^{ \pm 1}\right] \bigcap \cdots \bigcap \mathbb{N} \mathbb{P}\left[X_{t_{n}}^{ \pm 1}\right] \subseteq \mathcal{U}\left(\Sigma_{t}\right), \\
\mathcal{U}^{+}\left(\Sigma_{t}\right):=\left\{f \in \mathcal{U}_{\geqslant 0}\left(\Sigma_{t}\right) \mid L^{t}(f) \in \mathbb{N}\left[Y_{t}\right]\left[X_{t}^{ \pm 1}\right]\right. \\
\text { and } \left.L^{t_{i}}(f) \in \mathbb{N}\left[Y_{t_{i}}\right]\left[X_{t_{i}}^{ \pm 1}\right], \forall i \in[1, n]\right\},
\end{gathered}
$$

where $L^{t}(-)$ is defined to make $L^{t}\left(\rho_{h}\right)$ to be the Laurent expression in the cluster algebra over $\mathbb{Z} \operatorname{Trop}\left(Y_{t}\right)$.

$$
\mathcal{U}_{\geqslant 0}^{+}\left(\Sigma_{t}\right):=\mathcal{U}^{+}\left(\Sigma_{t}\right) \bigcap \mathcal{U}_{\geqslant 0}\left(\Sigma_{t_{1}}\right) \bigcap \cdots \bigcap \mathcal{U}_{\geqslant 0}\left(\Sigma_{t_{n}}\right)
$$

where $t_{i} \in \mathbb{T}_{n}$ is the vertex connected to $t \in \mathbb{T}_{n}$ by an edge labeled i.

For $t^{\prime} \in \mathbb{T}_{n}, h \in \mathbb{Z}^{n}$ and any homogeneous Laurent polynomial $f \in \mathbb{Z}\left[Y_{t^{\prime}}\right]\left[X_{t^{\prime}}^{ \pm 1}\right] \subseteq \mathbb{Z} \operatorname{Trop}\left(Y_{t^{\prime}}\right)\left[X_{t^{\prime}}^{ \pm 1}\right]$,
denote by $\mathrm{co}_{X_{t^{\prime}}^{h}}(f)$ the coefficient of the Laurent monomial $X_{t^{\prime}}^{h}$ in f, i.e. if the coefficient is a, then

$$
c o_{{t^{\prime}}^{n}}(f)=a
$$

Newton polytope

Any Laurent monomial $a Y^{v}$ ，where $a \in \mathbb{Z}$ ，corresponds to a vector $v \in \mathbb{Z}^{n}$ ，called a point with weight．
－The support of a Laurent polynomial F is a set consisting of \mathbb{N}－vectors associated to summand monomials of F ．
－The Newton polytope N of a Laurent polynomial F is the convex hull of the support of F ．
－The support of a Laurent polynomial F is saturated（饱和的）if any lattice point in the Newton polytope N is associated to a summand monomial of F ．

The relation between Newton polytopes and Laurent polynomials

Given a vector $h \in \mathbb{Z}^{n}$ and a cluster algebra \mathcal{A} with principal coefficients, there is a bijection:
\{homogeneous Laurent polynomials in $\mathbb{Z}[Y]\left[X^{ \pm 1}\right]$ with grade h \}
$\stackrel{\tilde{亡}}{\longleftrightarrow}$ \{Polytopes with weights\}
summand $a \hat{Y}^{p} X^{h} \quad \mapsto \quad$ (lattice) point p with weight a

That is, we have

$$
\tilde{v}\left(f(\hat{Y}) X^{h}\right)=N_{h}
$$

Outline of the idea of the polytope function ρ_{h} associated to $h \in \mathbb{Z}^{n}$

As a generalization of cluster monomials, for $h \in \mathbb{Z}^{n}$, we need to construct a function ρ_{h} to include X^{h} as a summand and to be a homogeneous Laurent polynomial in the cluster X_{t} for any $t \in \mathbb{T}_{n}$ with coefficients in $\mathbb{N}[Y]$.

Such global conditions are too complicated to deal with directly, so we first try to construct a such function in local conditions for any given vertex $t_{0} \in \mathbb{T}_{n}$ and those vertices around it, and then construct ρ_{h} in global conditions.

Based on the above idea, ρ_{h} can be constructed in the following three steps.
(i) In general, X^{h} can not be expressed as a Laurent polynomial with positive coefficients in any cluster. For example, when $h_{k}<0$ for some $k \in[1, n]$, the expression of X^{h} in $X_{t_{k}}$ equals to $\left(\frac{M_{k, t_{k}}}{X_{k, t_{k}}}\right)^{n_{k}} \prod_{i \neq k} x_{i, t_{k}}^{h_{i}}=\frac{x_{k, t_{k}}^{-t_{k}} \prod_{i \neq k} x_{i, t_{k}}^{h_{i}}}{M_{k, t_{k}}^{-k_{k}}}$, which is not a Laurent polynomial in $X_{t_{k}}$, where $t_{k} \in \mathbb{T}_{n}$ is the vertex connected to t_{0} by an edge labeled k.

Our method is to add some Laurent polynomial in X to make the summation also a Laurent polynomial in $X_{t_{k}}$. Concretely, we find $\left(\hat{y}_{k}+1\right)^{-h_{k}} X^{h}=x_{k}^{h_{k}} M_{k ; t_{k}}^{-h_{k}} \prod_{i \neq k} x_{i}^{h_{i}+\left[-b_{k}\right]+h_{k}}$ having X^{h} as a summand, which can be expressed as a Laurent polynomial in $X_{t_{k}}$.
(ii) If there is $k^{\prime} \in[1, n]$ such that $\left(\hat{y}_{k}+1\right)^{-h_{k}} X^{h}$ can not be expressed as a Laurent polynomial in $X_{t_{k^{\prime}}}$, then there is a summand $x_{k^{\prime}}^{-a} p$, where $a \in \mathbb{Z}_{>0}$ and p is some Laurent monomial in $X_{t_{k^{\prime}}} \backslash\left\{x_{k^{\prime}}\right\}$.

Again we need to find a Laurent polynomial $x_{k^{\prime}}^{-a} M_{k^{\prime}, t_{k^{\prime}}}^{a} q \in \mathbb{N}[Y]\left[X^{ \pm 1}\right]$ which has $x_{k^{\prime}}^{-a} p$ as a summand, where q is a Laurent monomial in $X_{t_{k^{\prime}}} \backslash\left\{x_{k^{\prime}}\right\}$.

In the above process we call $x_{k}^{-a} M_{k, t_{k}}^{a} q$ a complement of $x_{k}^{-a} p$ in direction k.
(iii) Then we focus on the minimal Laurent polynomial having both $\left(\hat{y}_{k}+1\right)^{-h_{k}} X^{h}$ and $x_{k^{\prime}}^{-a} M_{k^{\prime}, t_{k^{\prime}}}^{a} q$ as summands and look for $k^{\prime \prime} \in[1, n]$ if it exists such that the minimal Laurent polynomial can not be expressed as a Laurent polynomial in $X_{t_{k^{\prime \prime}}}$ to repeat step (ii) for $k^{\prime \prime}$.

Such construction keeps on until the final (formal) Laurent polynomial can be expressed as a (formal) Laurent polynomial in any $X_{t_{k}}$ for $k \in[1, n]$, and we denote it by ρ_{h}.
ρ_{h} is called a polytope function.
Note that ρ_{h} is a Laurent polynomial if the construction ends in finitely many steps, otherwise it is a formal Laurent polynomial.

Construct ρ_{h} by induction via Newton polytopes

We find a decomposition

$$
x_{i} \rho_{h}=\sum_{w, \alpha} c_{w, \alpha} Y^{w} \rho_{\alpha}
$$

for ρ_{h}, which simplifies our construction by induction on ρ_{α} induced by sub-polytopes indexed by α.

During the construction of a polytope function ρ_{α}, the sub-polytope N_{α} associated to ρ_{α} is constructed with the order induced by its sub-polytopes.

Thus, it is more convenient for us to construct and study ρ_{h} via N_{h}.

Theorem 1

Let \mathcal{A} be a cluster algebra having principal coefficients and $h \in \mathbb{Z}^{n}$. Denote N_{h} as the polytope corresponding to ρ_{h} and let $H=\left\{h \in \mathbb{Z}^{n}: \rho_{h} \in \mathcal{U}_{\geqslant 0}^{+}\left(\Sigma_{t_{0}}\right)\right\}$. Then,
(i) There is a unique indecomposable Laurent polynomial $\rho_{h}:=\rho_{h}^{t_{0}}$ in $\widehat{\mathcal{U}}_{\geqslant 0}^{+}\left(\Sigma_{t_{0}}\right)$ having X^{h} as a summand.
(ii) $\rho_{h} \in \mathbb{N}\left[Y_{t}\right]\left[\left[X_{t}^{ \pm 1}\right]\right]$ for any $t \in \mathbb{T}_{n}$ and it is indecomposable universally positive. So, $\mathcal{P}=\left\{\rho_{h} \in \mathcal{U}(\mathcal{A}) \mid h \in H\right\}$ is independent to the choice of the initial seed and contains all monomials in $\left\{X_{t}^{\alpha} \mid \alpha \in \mathbb{N}^{n}, t \in \mathbb{T}_{n}\right\}$.
(iii) $\left.\rho_{h}\right|_{x_{i} \rightarrow 1}$ is a polynomial in $\mathbb{Z}[Y]$ having a unique maximal term and constant term, and the coefficients of them are both 1.

Indeed, $\left.\rho_{h}\right|_{x_{i} \rightarrow 1}$ can be realized as a generalization of F-polynomial for $h \in \mathbb{Z}^{n}$. When h is a g-vector, it is just the usual F-polynomial.

Theorem 2

Let \mathcal{A} be a cluster algebra having principal coefficients and $h \in \mathbb{Z}^{n}$. Then,
(i) For $h \in \mathbb{Z}^{n}$ such that $\rho_{h}^{t_{0}} \in \mathcal{U}_{\geqslant 0}^{+}(\Sigma)$ and any $k \in[1, n]$, there is

$$
\begin{equation*}
h^{t_{k}}=h-2 h_{k} e_{k}+h_{k}\left[b_{k}\right]_{+}+\left[-h_{k}\right]_{+} b_{k} \tag{1}
\end{equation*}
$$

such that $L^{t_{k}}\left(\rho_{h}^{t_{0}}\right)=\rho_{h^{t_{k}}}^{t_{k}}$, where $t_{k} \in \mathbb{T}_{n}$ is the vertex connected to t_{0} by an edge labeled k.
(ii) Let S be a r-dimensional face of N_{h}. Then there are a cluster algebra \mathcal{A}_{S}^{\prime} with principal coefficients of rank r, a vector $h^{\prime} \in \mathbb{Z}_{r}$ and an isomorphism τ from $N_{h^{\prime}}$ to S with its induced linear map $\tilde{\tau}$ satisfying $\tilde{\tau}\left(e_{i}\right) \in \mathbb{N}^{n}$ for any $i \in[1, r]$.

In skew-symmetrizable case

Theorem

Let \mathcal{A} be a skew-symmetrizable cluster algebra with principal coefficients, $h \in \mathbb{Z}^{n}$ such that E_{h} is finite and S be a r-dimensional face of N_{h}. Let B^{\prime} be the initial exchange matrix of the cluster algebra \mathcal{A}_{S}^{\prime} related to S in the above theorem.
Then $B^{\prime}=\bar{W}^{\top} B W$, where $W=\left(\tilde{\tau}\left(e_{1}\right), \cdots, \tilde{\tau}\left(e_{r}\right)\right)$,
$\bar{W}=\left(\overline{\tau\left(e_{1}\right)}, \cdots, \overline{\tau\left(e_{r}\right)}\right)$ are $n \times r$ integer matrices,
$\tilde{\tau}\left(e_{i}\right)=\sum_{j=1}^{r} w_{j i} e_{j}, \overline{\tau\left(e_{i}\right)}=\sum_{j=1}^{r} \frac{d_{j}}{d_{s}} w_{j i} e_{j}$ as column vectors with
$s \neq \emptyset$ the label of the edge in S parallel to $\tilde{\tau}\left(e_{i}\right)$ and
$\overline{\tau\left(e_{i}\right)}=\sum_{j=1}^{r} w_{j i} e_{j}$ when the label is \emptyset.

Construction of $\rho_{h}\left(N_{h}\right)$

When \mathcal{A} is a cluster algebra with principal coefficients of rank n and $h \in \mathbb{Z}^{n}$. We can decompose N_{h} as a summation of smaller polytopes:

$$
N_{h}=\sum_{N_{\alpha_{j}}\left[w_{j} \in \cup \cup \cup U\right.} N_{\alpha_{j}^{\prime}}\left[w_{j}\right],
$$

where $U_{h}^{0}=\left\{N_{h+e_{i}}\right\} \cup \bigcup_{j}\left\{N_{\iota_{k ;} ; h_{k}+\iota_{k} ;\left(w_{j}\right)}\left(b_{k}^{\top}\right) \alpha_{j}\left[\iota_{; 0}\left(w_{j}\right)\right]\right\}$ and U_{h}^{\prime} is iteratively determined to make ρ_{h} an indecomposable Laurent polynomial ρ_{h} in $\mathcal{U}_{\geq 0}^{+}\left(\Sigma_{t_{0}}\right)$.

Moreover in a cluster algebra over arbitrary semifield $\mathbb{Z P}$, let $F_{h}=\left.\rho_{h}^{p r}\right|_{x_{i} \rightarrow 1, \forall i \in[1, n]}$. Then,

$$
\rho_{h}=\frac{\left.F_{h}\right|_{\mathcal{F}}(\hat{Y})}{F_{h} \mid \mathbb{P}(Y)} X^{h} \in \mathbb{N} \mathbb{P}\left[\left[X^{ \pm 1}\right]\right] .
$$

Example of Construction of $\rho_{h}\left(N_{h}\right)$ for rank 2

Denote by $I(\overline{p q})$ the length of the segment connecting two points p and q.

$$
\tilde{C}_{i}^{j} \triangleq \begin{cases}\binom{i}{j} & \text { if } i \geqslant 0 ; \\ 0 & \text { if } i<0 .\end{cases}
$$

When \mathcal{A} is a cluster algebra with principal coefficients of rank 2,

$$
B=\left(\begin{array}{cc}
0 & b \\
-c & 0
\end{array}\right),
$$

where $b, c \in \mathbb{Z}_{>0}$. For $h=\left(h_{1}, h_{2}\right) \in \mathbb{Z}^{2}, V_{h}=$ $\left\{(0,0),\left(\left[-h_{1}\right]_{+}, 0\right]\right),\left(0,\left[-h_{2}\right]_{+}\right),\left(\left[-h_{1}\right]_{+},\left[-h_{2}+c\left[-h_{1}\right]_{+}\right]_{+}\right)$, $\left.\left(\left[-h_{1}\right]_{+}-\left[\left[-h_{1}\right]_{+}-b\left[c\left[-h_{1}\right]_{+}-h_{2}\right]_{+}\right]_{+},\left[-h_{2}+c\left[-h_{1}\right]_{+}\right]_{+}\right)\right\}$ while E_{h} is the set consisting of edges connecting points in V_{h} and parallel to e_{1} or e_{2}.

Example of Construction of $\rho_{h}\left(N_{h}\right)$ for rank 2

For any point $p_{0}=\left(u_{0}, v_{0}\right)$ in an arbitrary edge $p_{1} p_{2}$ in E_{h} with $p_{1}, p_{2} \in V_{h}$, define the weight $\operatorname{co}_{p_{0}}=\tilde{C}_{l\left(\overline{p_{1}} p_{2}\right)}^{/\left(\overline{p_{2}}\right)}$, and denote

$$
m_{1}\left(p_{0}\right)=\left\{\begin{aligned}
c o_{p_{0}}, & \text { if } u_{0}=-h_{1} \\
0, & \text { otherwise }
\end{aligned}\right.
$$

and

$$
m_{2}\left(p_{0}\right)=\left\{\begin{aligned}
c o_{p_{0}}, & \text { if } v_{0}=0 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Example of Construction of $\rho_{h}\left(N_{h}\right)$ for rank 2

For point $p=(u, v)$ not in E_{h}, define $c o_{p}$ inductively as follows:

$$
\begin{gathered}
c o_{p}=\max \left\{\sum_{i=1}^{\left[-h_{2}+c\left[-n_{1}\right]_{+}\right]_{+}-u} m_{1}((u+i, v)) \tilde{C}_{-h_{1}-b v}^{i},\right. \\
\left.\sum_{i=1}^{v} m_{2}((u, v-i)) \tilde{C}_{-h_{2}+c u}^{i}\right\} \\
m_{1}(p)=c o_{p}-\sum_{i=1}^{\left[-h_{2}+c\left[-h_{1}\right]_{+}\right]_{+}-u} m_{1}((u+i, v)) \tilde{C}_{-h_{1}-b v}^{i}, \\
m_{2}(p)=c o_{p}-\sum_{i=1}^{v} m_{2}((u, v-i)) \tilde{C}_{-h_{2}+c u}^{i} .
\end{gathered}
$$

Then, we denote by N_{h} the convex hull of the set $\left\{p \in \mathbb{N}^{2} \mid c o_{p} \neq 0\right\}$.

Cluster variables and polytopes

In particular, since $\rho_{e_{i}}=x_{i}$, we can see that $\rho_{g_{l: t}}=x_{i ; t} \in \mathcal{P}$. So cluster variables and their associated polytopes satisfy the above results.

Theorem (Recurrence formula)

Let \mathcal{A} be a TSSS cluster algebra having principal coefficients, then $x_{l ; t}=\rho_{g_{l: t}}$ and $N_{l ; t}=N_{g_{l: t}}$. Following this, we have that

$$
\begin{align*}
& \operatorname{co}_{p}\left(N_{l ; t}\right)=\operatorname{co}_{p}\left(N_{g_{l i t}}\right)=\sum \operatorname{co}_{p}\left(N_{h_{j}[}\left[w_{\left.j^{\prime}\right]}\right]\right) \tag{2}\\
& N_{h_{j},}\left[w_{j}\right] \in U_{T} U_{g_{l t}}^{r}
\end{align*}
$$

and

$$
\begin{equation*}
x_{l ; t}=X_{t_{0}}^{g_{i ; t}}\left(\sum_{p \in N_{g_{l ; t}}} \cos \left(N_{l ; t}\right) \hat{Y}^{p}\right) \tag{3}
\end{equation*}
$$

Positivity conjecture

In [FZ1], the positivity conjecture for cluster variables is suggested, that is,

Conjecture [FZ1]

Every cluster variable of a cluster algebra \mathcal{A} is a Laurent polynomial in cluster variables from an initial cluster X with positive coefficients.

So far, the recent advance on the positivity conjecture is the proof in skew-symmetrizable case given in [GHKK]. For totally sign-skew-symmetric cluster algebras, it was only proved in acyclic case in [HL].

Positivity conjecture

As a harvest of this polytope method, a natural conclusion of the above Theorem is the following corollary, which actually completely confirms the positivity conjecture in the most general case:

Corollary (Positivity for TSSS cluster algebras)

Let \mathcal{A} be a TSSS cluster algebra with principal coefficients and (X, Y, B) be its initial seed. Then every cluster variable in \mathcal{A} is a Laurent polynomial over $\mathbb{N}[Y]$ in X.

Proof.

It follows from the fact that in the right-hand side of recurrence formula (2), the coefficients of $x_{l ; t}$ in (3) are always positive due to our construction of N_{h}.

From g-vectors to F-polynomials

Let \mathcal{A} be a TSSS cluster algebra having principal coefficients, there is a bijective map
\{non-initial g-vectors of $\mathcal{A}\} \xrightarrow{\cong}$ \{non-initial F-polynomials of $\mathcal{A}\}$

$$
g_{l ; t}
$$

\mapsto

$$
\left.\rho_{g_{i ; t}}\right|_{x_{i} \rightarrow 1}
$$

From F-polynomials to d-vectors

$\forall k \in[1, n]$, we can write $P_{l ; t}$ as a sum of x_{k}-homogeneous
polynomials $P_{l ; t}=\sum_{s=d_{k}\left(x_{i ; t}\right)}^{\operatorname{deg}_{k}\left(P_{l ; t}\right)} x_{k}^{s} P_{s}(k)+\sum_{s=0}^{d_{k}\left(x_{l ; t}\right)-1} x_{k}^{s} M_{k}^{d_{k}\left(x_{i ; t}\right)-s} P_{s}(k)$,
where $M_{k}=x_{k} \mu_{k}\left(x_{k}\right)$.
Define $\widetilde{\operatorname{deg}}_{k}\left(P_{l ; t}\right)=\max \left\{r \mid M_{k}^{r}\right.$ divides $\left.\left(\left.P_{l ; t}\right|_{x_{k} \rightarrow M_{k}}\right)\right\}$.

Theorem

Let \mathcal{A} be a TSSS cluster algebra having principal coefficients. $d_{k}\left(x_{l ; t}\right)=\widetilde{\operatorname{deg}_{k}}\left(P_{l ; t}\right)=\widetilde{\operatorname{deg}_{k}}\left(\left.P_{l ; t}\right|_{x_{k}=0}\right) \in \mathbb{N}$.
This means the positivity conjecture of d-vectors of a cluster variable is always true.

From F-polynomials to d-vectors

From [FZ4], we have

$$
x_{l ; t}=\frac{F_{l ; t}^{t^{\prime}} \mid \mathcal{F}\left(\hat{y}_{1 ; t^{\prime}}, \cdots, \hat{y}_{n ; t^{\prime}}\right)}{F_{l ; t}^{t^{\prime}} \mid \mathbb{P}\left(y_{1 ; t^{\prime}}, \cdots, y_{n ; t^{\prime}}\right)} \prod_{i=1}^{n} x_{i ; t^{\prime}}^{g_{i}},
$$

Then, $P_{l ; t}$ is the factor of $\left.F_{l ; t}\right|_{\mathcal{F}}\left(\hat{y}_{1}, \hat{y}_{2}, \cdots, \hat{y}_{n}\right)$ which is coprime with $x_{i}, i \in[1, n] x_{i, t^{\prime}}$.

Let \mathcal{A} be a cluster algebra having principal coefficients, there is a surjective map
\{non-initial F-polynomials $\} \rightarrow$ \{positive d-vectors $\}$

$$
F_{l ; t} \mapsto P_{l ; t} \mapsto\left(\widetilde{\operatorname{deg}}_{1}\left(\left.P_{l ; t}\right|_{x_{1}=0}\right), \cdots, \widetilde{\operatorname{deg}}_{n}\left(\left.P_{l ; t}\right|_{x_{n}=0}\right)\right)
$$

From F-polynomials to d-vectors

Corollary

Let \mathcal{A} be a cluster algebra with principal coefficients, $x_{l_{;} ; t}, x_{l^{\prime} ; t^{\prime}}$ be two non-initial cluster variables and $F_{l ; t}, F_{l^{\prime} ; t^{\prime}}$ the F-polynomials associated to $x_{l ; t}, x_{l^{\prime} ; t^{\prime}}$ respectively. If $F_{l ; t}=F_{l^{\prime} ; t^{\prime}}$, then $x_{l ; t}=x_{l^{\prime} ; t^{\prime}}$.

Relation diagram

Polytope basis

$$
\begin{aligned}
\chi_{2}:\{g-\text { vectors }\} & \longrightarrow \quad\{\text { cluster variables }\} \\
g_{l ; t} & \mapsto \quad \rho_{g_{l ; t}}=x_{l ; t}
\end{aligned}
$$

The map χ_{2} can be generalized to \mathbb{Z}^{n}. Denote

$$
\mathcal{P}=\left\{\rho_{h} \in \mathbb{N} \mathbb{P}\left[X^{ \pm 1}\right] \mid h \in \mathbb{Z}^{n}\right\}
$$

Proposition

Let \mathcal{A} be a cluster algebra.
(i) \mathcal{P} is independent of the choice of the initial seed. Hence $\mathcal{P} \subseteq \mathcal{U}(\mathcal{A})$ and all elements in \mathcal{P} are universally positive and indecomposable.
(ii) \mathcal{P} contains all cluster monomials with coefficient 1.

Polytope basis

Theorem

Let \mathcal{A} be a cluster algebra with principal coefficients. Then \mathcal{P} is a strongly positive $\mathbb{Z} \operatorname{Tr}$ op (Y)-basis for the upper cluster algebra $\mathcal{U}(\mathcal{A})$.

We would like to call \mathcal{P} the polytope basis for $\mathcal{U}(\mathcal{A})$.

In rank 2 case, it is coincident to the greedy basis introduced in [LLZ].

Thanks for your attention!

