## Bracelets are theta functions

#### Fan Qin

(joint work with Travis Mandel)

Trends in Cluster Algebras, 2022.09.22

## Overview

- $\bullet\,$  Surface with marked points  $\Sigma\,$
- Skein algebra  $\overline{Sk}(\Sigma) = \{\text{unions of curves}\}$ 
  - {bracelets} is a basis [FG06][MSW13][Thu14].
- Triangulation Δ --→ a seed t<sub>Δ</sub> --→ upper cluster algebra U(t<sub>Δ</sub>) [FST08], often:
  - {quantum theta func.} is a basis of  $U(t_{\Delta})$  [GHKK18][DM21]
  - [Mul16] Unpunctured  $\Sigma$ :

 $\boldsymbol{U}(t_{\Delta}) = \text{localization of } \overline{\mathsf{Sk}}(\Sigma) \text{ at the boundary arcs}$ 

Roughly speaking, for general  $\Sigma$ , quantum bracelets = quantum theta functions. (Visualization of theta functions)

- Exception: once-punctured torus
- $\implies$  atomicity conjecture: the bracelets basis is the minimal positive basis.

Constructions and Results

## Toy Model

- $\Bbbk = \mathbb{Z}$  (quantum case  $\Bbbk = \mathbb{Z}[q^{\pm rac{1}{2}}]$ )
- Surface  $\Sigma$ : 4-gon. Triangulations  $\Delta \stackrel{\mathsf{flip}}{\longleftrightarrow} \Delta'$



- Skein alg  $\overline{Sk} := \bigoplus_{D:union of curves} \mathbb{k}[D]/(skein relations)$ 
  - $\bullet$  multiplication:  $\cup$
  - k-basis={mono. in  $A_1, \dots, A_5$ }  $\cup$  {mono. in  $A'_1, A_2, \dots, A_5$ }
  - $\Bbbk[A_2,...,A_5]$ -basis  $\{A_1^d\} \cup \{(A_1')^d\}$
- (Upper) cluster alg  $\boldsymbol{U} := \Bbbk[A_1^{\pm}, \dots, A_5^{\pm}] \cap \Bbbk[(A_1')^{\pm}, \dots, A_5^{\pm}]$ 
  - triangulation  $\Delta = \{A_1, \dots, A_5\}$ : toric local chart of Spec U

• 
$$\boldsymbol{U} = \overline{\mathsf{Sk}}[A_2^{-1}, \dots, A_5^{-1}]$$

Algebras on Surfaces

Constructions and Results

# Cluster Algebras from Quivers

• Dual of triangulations: quivers



In general, we can construct cluster algebras from quivers:

- triangulation  $-\rightarrow$  seed s =  $(Q, (A_i)_{i \in Q_0})$  (~local chart)
  - vertices of Q are unfrozen/frozen (internal/boundary)
- flip --→ mutation (~ change local charts)
- Iterate mutations  $\Longrightarrow$  all seeds  $\Longrightarrow$   $m{U}$
- A seed is of *full rank*  $\iff$  it can be *quantized*

Overview

Algebras on Surfaces

Constructions and Results

## Skein Algebra on Surfaces

- $\Sigma = (S, M)$ , S: topological surface, M: marked points
  - each connected component of  $\partial {\it S}$  contains  $\geq 1$  marked points
  - $M \setminus \partial S$ : punctures
- curve  $C_i$ : ending at M or a closed loop
- diagram D: a union of curves. [D] isotopy class
  - considered up to isotopy (fixing M and crossings)
  - denote  $D = \bigcup w_j C_j$  where  $w_j$  is the weight (multiplicity) of  $C_j$
  - called internal if it does not contain a boundary arc
  - called simple if not reducible by Skein relations
- Skein algebra  $\overline{\mathsf{Sk}}(\Sigma) := \oplus \Bbbk[D]/(\mathsf{Skein relations})$

$$= 0 + 0 = -2$$
 
$$= -2$$
 
$$= 0 = 0$$
 
$$= 2$$
 
$$= 0$$

If unpunctured, ∃ quantization:
[D] \* [D'] = [D put above D'], q-Skein relations

## From Skein Algebras to Cluster Algebras

- Arc  $\gamma$ : simple curve ending at M
  - $\gamma_1,\gamma_2$  are compatible if they have no crossing
- Punctured case: tagged arc [FST08]
  - tagged plain or notched at the punctured ending
  - notion of compatibility (no-crossing, compatible tagging)
- Ideal/tagged triangulation Δ: a maximal collection of non-isotopic compatible arcs/tagged arcs.
- $\Delta \dashrightarrow$  seed  $t_{\Delta}$  [FST08]
  - cluster variables:  $\gamma \in \Delta$  (frozen: boundary)
  - $\bullet\,$  quiver: oriented "dual graph" of  $\Delta\,$
  - if unpunctured --+ quantum seed  $t_{\Delta}$  [Mul16]
- $\mathsf{Sk}(\Sigma) := \mathsf{localization} \text{ of } \overline{\mathsf{Sk}}(\Sigma) \text{ at the boundary arcs, then}$  $\mathsf{Sk}(\Sigma) \subset \boldsymbol{U}(t_\Delta).$ 
  - $\bullet~[{\sf Mul16}]$  For most unpunctured  $\Sigma,$  they coincide.

Algebras on Surfaces

Constructions and Results

### Example: annulus



- annulus = area bounded by  $A_3, A_4$ .
- initial triangulation  $\Delta = \{A_1, A_2\} \cup \{A_3, A_4\}$ ,
  - $t_{\Delta}$  is associated with a Kronecker quiver
- Infinite many triangulations (by rotating boundary)

Dictionary

| Topology (SL <sub>2</sub> -local system on $\Sigma$ ) | Cluster theory               |
|-------------------------------------------------------|------------------------------|
| tagged triangulation $\Delta$                         | seed $t_{\Delta}$            |
| tagged arc                                            | cluster variable             |
| boundary arc                                          | coefficients/frozen variable |
| $\cup \gamma_i 	ext{ for } \gamma_i \in \Delta$       | cluster monomial             |
| union                                                 | multiplication               |
| flip                                                  | mutation                     |

Algebras on Surfaces

Constructions and Results

# Bracelet Basis (Theta Basis)



- Brac(w, L) a bracelet loop with w-1 self-crossings.
- A bracelet diagram  $BracD = \bigcup$  compatible arcs and Brac(w, L)
- $\overline{\mathsf{Sk}}(\Sigma)$  has the  $\Bbbk[b_1, b_2]$ -basis {[internal *BracD*]}
  - $= \{ [internal \ cluster \ monomials] \} \cup \{ [Brac(w, L)] | w > 0 \}$

# Chebyshev Polynomials

• Chebyshev polynomial of the first kind  $T_w()$ ,  $w \ge 0$ :  $T_w(z+z^{-1}) = z^w + z^{-w}$ •  $T_0(z) = 2$ ,  $T_1(z) = z$ ,  $z \cdot T_w(z) = T_{w+1}(z) + T_{w-1}(z)$ 

• 
$$\operatorname{tr}(M^w) = T_w(\operatorname{tr} M)$$
 for  $M \in SL_2$ 

#### Theorem 1 ([MSW13])

 $[\operatorname{Brac}(w,L)] = T_k([L]).$ 

#### Example 2

 $[Brac(2, L)] = [L]^2 - 2$ 

## Atomicity

- An element in *U* is universally positive if, with respect to any seed, its Laurent coefficients belong to k<sup>+</sup> = N (or N[q<sup>±<sup>1</sup>/<sub>2</sub></sup>]).
- A basis of **U** is said to be atomic if:
  - it consists of universally positive elements
  - $\bullet\,$  any universally positive element is a  $\Bbbk^+\mbox{-sum}$  of its elements.
- The atomic basis is unique if it exists.

#### Conjecture [FG06][MSW13]

Bracelets form the atomic basis (in some settings)

## Theorem 3 ([GHKK18][Man17][Yur20])

If no component of  $\Sigma$  is a once-punctured closed surface, then the theta functions form a basis for **U**. Moreover, this theta basis is atomic.

# Similar Seeds

#### Definition 4 ([Qin14, Qin17])

Two seeds t, t' are similar if they share the same unfrozen full subquiver.

- ullet  $\Longrightarrow$   $oldsymbol{U}(t)$  and  $oldsymbol{U}(t')$  share similar structure and properties
- For experts: an element in U(t) is similar to an element in U(t') if they share the same unfrozen g-vector and the same F-polynomial.
  - Examples include the cluster monomials
  - Assume t is of full rank, if we have a good basis for  $\boldsymbol{U}(t)$ , then the similar elements form a spanning set for  $\boldsymbol{U}(t')$ .
- Assume t is similar to  $t_{\Delta}$ 
  - We say  $\boldsymbol{U}(t)$  is of type  $\Sigma$
  - If we have defined a bracelet element in  $\boldsymbol{U}(t_{\Delta})$ , the similar element for  $\boldsymbol{U}(t)$  is also called a bracelet element.

### Quantization

- For unpunctured  $\Sigma$ :
  - We can  $t = t_{\Delta}$ , quantize Sk( $\Sigma$ ),  $t_{\Delta}$  as in [Mul16]
- For  $\Sigma$  with punctures: Sk( $\Sigma$ ) and  $t_{\Delta}$  cannot be quantized!
  - We can choose a seed t similar to t<sub>∆</sub> (such as the principal coefficients) and quantize t instead.

# Tagged Bracelet Elements for Upper Cluster Algebras

- A tagged bracelet diagram D = (∪k<sub>i</sub>γ<sub>i</sub>)∪(∪w<sub>j</sub>L<sub>j</sub>) consisting of compatible tagged arcs and bracelet loops.
- Construct (quantum) tagged bracelet  $\langle D \rangle_{Brac}$  in  $\boldsymbol{U}(t)$ :
  - $\langle \gamma_i \rangle_{\rm Brac}$ : the (quantum) cluster variable corresponding to the tagged arc  $\gamma_i$ 
    - Exception: tagged notched arcs on a 1-punctured closed surface are NOT cluster variables. Need definition.
  - $\langle w_j L_j \rangle_{\text{Brac}}$ : take the quantum trace of  $\text{Brac}(w_j, L_j)$ ([BW11][AK17] define it in the cluster Poisson algebra, consider its image in  $\boldsymbol{U}(t)$ )
  - $\langle D \rangle_{\text{Brac}} = q^{\alpha} (\prod \langle \gamma_i \rangle_{\text{Brac}}^{k_i}) \prod (\prod \langle w_j L_j \rangle_{\text{Brac}})$ , where  $\alpha$  is chosen to guarantee the bar-invariance  $q \mapsto q^{-1}$ .

Overview

## Tagged Notched Arcs for Once-Punctured Closed Surfaces

For q = 1. Consider a finite cover π : Σ → Σ. The lift of a tagged notched arc γ corresponds to a cluster variable x. Define the bracelet element for γ in U(t) as

$$[\gamma] = \pi x.$$

- Justified by the Teichmüller theory (lambda length).
- Assume  $\Sigma$  is NOT a once-punctured torus.
  - Obstruction:  $\pi$  does NOT work for q-case
  - At q = 1, can show  $[\gamma]$  is a theta function  $\theta$ .
  - Donaldson-Thomas transformation = wall-crossing from  $\mathbb{R}^n_{>0}$ to  $\mathbb{R}^n_{<0}$  in the scattering diagram [GHKK18]  $\implies DT()$  sends [ $\gamma$ ] to tagged plain arc [ $\gamma^{\circ}$ ] at q = 1.
  - Define  $[\gamma]$  such that we still have

$$DT([\gamma]) = [\gamma^{\circ}].$$

- This will force  $[\gamma] = \theta$ .
- Better definition?

## Result: Visualization of Theta Functions.

 Assume Σ connected for simplicity. Choose a (quantum) seed t of type Σ.

#### Theorem 5

 $\forall$  tagged bracelet diagram D,  $\langle D \rangle_{Brac}$  is a quantum theta function  $\vartheta_{g(D)}$  in  $\boldsymbol{U}(t)$  iff one the following is satisfied:

•  $\Sigma$  is NOT a 1-punctured torus, or

•  $\Sigma$  is a 1-punctured torus, but D does not contain notched arcs If  $\Sigma$  is 1-punctured torus, for  $t = t_{\Delta}$  and q = 1,

$$\langle D \rangle_{\mathsf{Brac}} = 4^{\mathsf{wt}(D)} \vartheta_{g(D)}$$

where  $wt(D) := [-\sum g_i]_+$  for the g-vector  $g(D) = (g_i)$  of D.

• [Zho20] [notched arc]  $\neq$  theta function for 1-punctured torus.

## Result: Atomicity

#### Theorem 6

- For unpunctured Σ, the quantum bracelets is the atomic basis for Sk(Σ).
- For any Σ, at q = 1, the bracelets form the atomic basis for Sk(Σ) with respect to the ideal triangulation atlas (the triangulation only consists of arcs without tagging)

Algebras on Surfaces

## Proof: Ideas

Ideas for verifying that  $\langle D \rangle_{\rm Brac}$  is a theta function.

- We can cut the surface and work locally
  - Skein relations are local. Need some work for theta functions.
- (Key) [L] and, more generally,  $\langle wL \rangle_{Brac}$  is a theta function
  - Use Dehn twists to choose good  $\Delta$ .
  - Verify the Chebyshev recursion.

Figure: Dehn twist around L



- 3 In general,  $\langle D \rangle_{\text{Brac}}$  is a theta function (not easy)
  - The arguments follow the spirit of step 2
  - Detailed arguments are subtle and lengthy.

# Proof: [L] Is a Theta Function

- Cut out a subsurface  $\Sigma_L$  containing L and work locally.
- We first prove that [L] is the theta function  $\vartheta_{g(L)}$ , where g(L) is the leading degree (g-vector, incoming direction)
  - Graphical calculus + atomicity of theta functions.



Overview

# Proof: $\langle wL \rangle_{Brac}$ Is a Theta Function

#### A theta function $\vartheta_g$ can be computed

- as a Laurent polynomial  $\vartheta_{g,\Delta'}$ , by choosing any reference seed  $t_{\Delta'}$  (choose a generic base point in the chamber for  $t_{\Delta'}$ ).
- $\vartheta_{g,\Delta'}$  can be computed order by order (view the initial cluster Poisson variables  $X_k(t_{\Delta})$  as infinitesimal)

#### Chebyshev recursion

For some 
$$\Delta'$$
, we have  $\vartheta_{g(wL),\Delta'} = \mathcal{T}_w(\vartheta_{g(L),\Delta'})$ .

- Start with any Δ. Applying the Dehn twist around L to Δ for N ≫ 1 times to obtain Δ'. (a base point close to g(L) [Yur20])
- Then  $\vartheta_{g(wL),\Delta'} = A^{w \cdot g(L)} + A^{-w \cdot g(L)} + higher order terms.$
- $(\vartheta_{g(L),\Delta'})^w = \sum v_{s,w} \vartheta_{g(sL),\Delta'}$  has the same coefficients as the Chebyshev polynomials  $(z + z^{-1})^w = \sum v'_{s,w} T_s(z + z^{-1})$

## References I

[AK17] Dylan GL Allegretti and Hyun Kyu Kim, A duality map for quantum cluster varieties from surfaces, Advances in Mathematics 306 (2017), 1164–1208.

- [BW11] Francis Bonahon and Helen Wong, Quantum traces for representations of surface groups in sl2(C), Geometry & Topology 15 (2011), no. 3, 1569–1615.
- [DM21] Ben Davison and Travis Mandel, Strong positivity for quantum theta bases of quantum cluster algebras, Inventiones mathematicae (2021), 1–119, arXiv:1910.12915.
- [FG06] Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), no. 103, 1–211, arXiv:math/0311149.

## References II

[FST08] Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), no. 1, 83–146.

[GHKK18] Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich, Canonical bases for cluster algebras, Journal of the American Mathematical Society 31 (2018), no. 2, 497–608, arXiv:1411.1394.

- [Man17] Travis Mandel, *Theta bases are atomic*, Compositio Mathematica **153** (2017), no. 6, 1217–1219, arXiv:1605.03202.
- [MSW13] Gregg Musiker, Ralf Schiffler, and Lauren Williams, Bases for cluster algebras from surfaces, Compositio Mathematica 149 (2013), no. 02, 217–263, arXiv:1110.4364.

## References III

[Mul16] Greg Muller, Skein and cluster algebras of marked surfaces, Quantum topology 7 (2016), no. 3, 435–503, arXiv:1204.0020.

[Qin14] Fan Qin, t-analog of q-characters, bases of quantum cluster algebras, and a correction technique, International Mathematics Research Notices 2014 (2014), no. 22, 6175–6232, arXiv:1207.6604, doi:10.1093/imrn/rnt115.

[Qin17]

\_\_\_\_\_, *Triangular bases in quantum cluster algebras and monoidal categorification conjectures*, Duke Mathematical Journal **166** (2017), no. 12, 2337–2442, arXiv:1501.04085.

- [Thu14] Dylan Paul Thurston, Positive basis for surface skein algebras, Proceedings of the National Academy of Sciences 111 (2014), no. 27, 9725–9732, arXiv:1310.1959.
- [Yur20] Toshiya Yurikusa, *Density of g-vector cones from triangulated surfaces*, International Mathematics Research Notices **2020** (2020), no. 21, 8081–8119.
- [Zho20] Yan Zhou, Cluster structures and subfans in scattering diagrams, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 16 (2020), 013.