Bracelets are theta functions

Fan Qin
(joint work with Travis Mandel)

Trends in Cluster Algebras, 2022.09.22

Overview

- Surface with marked points Σ
- Skein algebra $\overline{\operatorname{Sk}}(\Sigma)=$ \{unions of curves $\}$
- \{bracelets\} is a basis [FG06][MSW13][Thu14].
- Triangulation $\Delta \rightarrow$ a seed $t_{\Delta} \rightarrow$ upper cluster algebra $\boldsymbol{U}\left(t_{\Delta}\right)$ [FST08], often:
- \{quantum theta func.\} is a basis of $\boldsymbol{U}\left(t_{\Delta}\right)$ [GHKK18][DM21]
- [Mul16] Unpunctured Σ :

$$
\boldsymbol{U}\left(t_{\Delta}\right)=\text { localization of } \overline{\operatorname{Sk}}(\Sigma) \text { at the boundary arcs }
$$

Roughly speaking, for general Σ, quantum bracelets $=$ quantum theta functions.
(Visualization of theta functions)

- Exception: once-punctured torus
- \Longrightarrow atomicity conjecture: the bracelets basis is the minimal positive basis.

Toy Model

- $\mathbb{k}=\mathbb{Z}$ (quantum case $\mathbb{k}=\mathbb{Z}\left[q^{ \pm \frac{1}{2}}\right]$)
- Surface Σ : 4-gon. Triangulations $\Delta \stackrel{\text { flip }}{\longleftrightarrow} \Delta^{\prime}$

- Skein alg $\overline{\operatorname{Sk}}:=\oplus_{D: u n i o n}$ of curves $\mathbb{k}[D] /($ skein relations)
- multiplication: \cup
- \mathbb{k}-basis $=\left\{\right.$ mono. in $\left.A_{1}, \ldots, A_{5}\right\} \cup\left\{\right.$ mono. in $\left.A_{1}^{\prime}, A_{2}, \ldots, A_{5}\right\}$
- $\mathbb{k}\left[A_{2}, \ldots, A_{5}\right]$-basis $\left\{A_{1}^{d}\right\} \cup\left\{\left(A_{1}^{\prime}\right)^{d}\right\}$
- (Upper) cluster alg $\boldsymbol{U}:=\mathbb{k}\left[A_{1}^{ \pm}, \ldots, A_{5}^{ \pm}\right] \cap \mathbb{k}\left[\left(A_{1}^{\prime}\right)^{ \pm}, \ldots, A_{5}^{ \pm}\right]$
- triangulation $\Delta=\left\{A_{1}, \ldots, A_{5}\right\}$: toric local chart of $\operatorname{Spec} \boldsymbol{U}$
- $\boldsymbol{U}=\overline{\mathrm{Sk}}\left[A_{2}^{-1}, \ldots, A_{5}^{-1}\right]$

Cluster Algebras from Quivers

- Dual of triangulations: quivers

In general, we can construct cluster algebras from quivers:

- triangulation \rightarrow seed $s=\left(Q,\left(A_{i}\right)_{i \in Q_{0}}\right)$ (local chart)
- vertices of Q are unfrozen/frozen (internal/boundary)
- flip \rightarrow mutation (\sim change local charts)
- Iterate mutations \Longrightarrow all seeds $\Longrightarrow \boldsymbol{U}$
- A seed is of full rank \Longleftrightarrow it can be quantized

Skein Algebra on Surfaces

- $\Sigma=(S, M), S:$ topological surface, M : marked points
- each connected component of ∂S contains ≥ 1 marked points
- $M \backslash \partial S$: punctures
- curve C_{i} : ending at M or a closed loop
- diagram D : a union of curves. [D] isotopy class
- considered up to isotopy (fixing M and crossings)
- denote $D=\cup w_{j} C_{j}$ where w_{j} is the weight (multiplicity) of C_{j}
- called internal if it does not contain a boundary arc
- called simple if not reducible by Skein relations
- Skein algebra $\overline{\operatorname{Sk}}(\Sigma):=\oplus \mathbb{k}[D] /($ Skein relations)

- If unpunctured, \exists quantization:
$[D] *\left[D^{\prime}\right]=\left[D\right.$ put above $\left.D^{\prime}\right], q$-Skein relations

From Skein Algebras to Cluster Algebras

- Arc γ : simple curve ending at M
- γ_{1}, γ_{2} are compatible if they have no crossing
- Punctured case: tagged arc [FST08]
- tagged plain or notched at the punctured ending
- notion of compatibility (no-crossing, compatible tagging)
- Ideal/tagged triangulation Δ : a maximal collection of non-isotopic compatible arcs/tagged arcs.
- $\Delta \rightarrow$ seed t_{Δ} [FST08]
- cluster variables: $\gamma \in \Delta$ (frozen: boundary)
- quiver: oriented "dual graph" of Δ
- if unpunctured \rightarrow quantum seed t_{Δ} [Mul16]
- $\operatorname{Sk}(\Sigma):=$ localization of $\overline{\operatorname{Sk}}(\Sigma)$ at the boundary arcs, then

$$
\operatorname{Sk}(\Sigma) \subset \boldsymbol{U}\left(t_{\Delta}\right)
$$

- [Mul16] For most unpunctured Σ, they coincide.

Example: annulus

- annulus $=$ area bounded by A_{3}, A_{4}.
- initial triangulation $\Delta=\left\{A_{1}, A_{2}\right\} \cup\left\{A_{3}, A_{4}\right\}$,
- t_{Δ} is associated with a Kronecker quiver
- Infinite many triangulations (by rotating boundary)

Dictionary

Topology $\left(S L_{2}\right.$-local system on $\left.\Sigma\right)$	Cluster theory
tagged triangulation Δ	seed t_{Δ}
tagged arc	cluster variable
boundary arc	coefficients/frozen variable
$\cup \gamma_{i}$ for $\gamma_{i} \in \Delta$	cluster monomial
union	multiplication
flip	mutation

Bracelet Basis (Theta Basis)

- $\operatorname{Brac}(w, L)$ a bracelet loop with $w-1$ self-crossings.
- A bracelet diagram $\operatorname{Brac} D=\bigcup$ compatible arcs and $\operatorname{Brac}(w, L)$
- $\overline{\operatorname{Sk}}(\Sigma)$ has the $\mathbb{k}\left[b_{1}, b_{2}\right]$-basis $\{[$ internal $\operatorname{BracD}]\}$
$=\{[$ internal cluster monomials $]\} \cup\{[\operatorname{Brac}(w, L)] \mid w>0\}$

Chebyshev Polynomials

- Chebyshev polynomial of the first kind $T_{w}(), w \geq 0$:

$$
\begin{aligned}
& T_{w}\left(z+z^{-1}\right)=z^{w}+z^{-w} \\
& \quad T_{0}(z)=2, T_{1}(z)=z, z \cdot T_{w}(z)=T_{w+1}(z)+T_{w-1}(z) \\
& \bullet \operatorname{tr}\left(M^{w}\right)=T_{w}(\operatorname{tr} M) \text { for } M \in S L_{2}
\end{aligned}
$$

Theorem 1 ([MSW13])

$[\operatorname{Brac}(w, L)]=T_{k}([L])$.

Example 2

$[\operatorname{Brac}(2, L)]=[L]^{2}-2$

Atomicity

- An element in \boldsymbol{U} is universally positive if, with respect to any seed, its Laurent coefficients belong to $\mathbb{k}^{+}=\mathbb{N}$ (or $\mathbb{N}\left[q^{ \pm \frac{1}{2}}\right]$).
- A basis of \boldsymbol{U} is said to be atomic if:
- it consists of universally positive elements
- any universally positive element is a \mathbb{k}^{+}-sum of its elements.
- The atomic basis is unique if it exists.

Conjecture [FG06][MSW13]

Bracelets form the atomic basis (in some settings)

Theorem 3 ([GHKK18][Man17][Yur20])

If no component of Σ is a once-punctured closed surface, then the theta functions form a basis for \boldsymbol{U}. Moreover, this theta basis is atomic.

Similar Seeds

Definition 4 ([Qin14, Qin17])

Two seeds t, t^{\prime} are similar if they share the same unfrozen full subquiver.

- $\Longrightarrow \boldsymbol{U}(t)$ and $\boldsymbol{U}\left(t^{\prime}\right)$ share similar structure and properties
- For experts: an element in $\boldsymbol{U}(t)$ is similar to an element in $\boldsymbol{U}\left(t^{\prime}\right)$ if they share the same unfrozen g-vector and the same F-polynomial.
- Examples include the cluster monomials
- Assume t is of full rank, if we have a good basis for $\boldsymbol{U}(t)$, then the similar elements form a spanning set for $\boldsymbol{U}\left(t^{\prime}\right)$.
- Assume t is similar to t_{Δ}
- We say $\boldsymbol{U}(t)$ is of type Σ
- If we have defined a bracelet element in $\boldsymbol{U}\left(t_{\Delta}\right)$, the similar element for $\boldsymbol{U}(t)$ is also called a bracelet element.

Quantization

- For unpunctured Σ :
- We can $t=t_{\Delta}$, quantize $\operatorname{Sk}(\Sigma), t_{\Delta}$ as in [Mul16]
- For Σ with punctures: $\operatorname{Sk}(\Sigma)$ and t_{Δ} cannot be quantized!
- We can choose a seed t similar to t_{Δ} (such as the principal coefficients) and quantize t instead.

Tagged Bracelet Elements for Upper Cluster Algebras

- A tagged bracelet diagram $D=\left(\cup k_{i} \gamma_{i}\right) \bigcup\left(\cup w_{j} L_{j}\right)$ consisting of compatible tagged arcs and bracelet loops.
- Construct (quantum) tagged bracelet $\langle D\rangle_{\mathrm{Brac}}$ in $\boldsymbol{U}(t)$:
- $\left\langle\gamma_{i}\right\rangle_{\text {Brac }}$: the (quantum) cluster variable corresponding to the tagged arc γ_{i}
- Exception: tagged notched arcs on a 1-punctured closed surface are NOT cluster variables. Need definition.
- $\left\langle w_{j} L_{j}\right\rangle_{\text {Brac }}$: take the quantum trace of $\operatorname{Brac}\left(w_{j}, L_{j}\right)$ ([BW11][AK17] define it in the cluster Poisson algebra, consider its image in $\boldsymbol{U}(t))$
- $\langle D\rangle_{\mathrm{Brac}}=q^{\alpha}\left(\Pi\left\langle\gamma_{i}\right\rangle_{\mathrm{Brac}}^{k_{i}}\right) \Pi\left(\Pi\left\langle w_{j} L_{j}\right\rangle_{\mathrm{Brac}}\right)$, where α is chosen to guarantee the bar-invariance $q \mapsto q^{-1}$.

Tagged Notched Arcs for Once-Punctured Closed Surfaces

- For $q=1$. Consider a finite cover $\pi: \widetilde{\Sigma} \rightarrow \Sigma$. The lift of a tagged notched arc γ corresponds to a cluster variable x. Define the bracelet element for γ in $\boldsymbol{U}(t)$ as

$$
[\gamma]=\pi x
$$

- Justified by the Teichmüller theory (lambda length).
- Assume Σ is NOT a once-punctured torus.
- Obstruction: π does NOT work for q-case
- At $q=1$, can show $[\gamma]$ is a theta function θ.
- Donaldson-Thomas transformation $=$ wall-crossing from $\mathbb{R}_{>0}^{n}$ to $\mathbb{R}_{<0}^{n}$ in the scattering diagram [GHKK18]
$\Longrightarrow D T()$ sends $[\gamma]$ to tagged plain arc $[\gamma]$ at $q=1$.
- Define $[\gamma]$ such that we still have

$$
D T([\gamma])=\left[\gamma^{\wedge}\right] .
$$

- This will force $[\gamma]=\theta$.
- Better definition?

Result: Visualization of Theta Functions.

- Assume Σ connected for simplicity. Choose a (quantum) seed t of type Σ.

Theorem 5

\forall tagged bracelet diagram $D,\langle D\rangle_{\mathrm{Brac}}$ is a quantum theta function $\vartheta_{g(D)}$ in $\boldsymbol{U}(t)$ iff one the following is satisfied:

- Σ is NOT a 1-punctured torus, or
- Σ is a 1-punctured torus, but D does not contain notched arcs If Σ is 1-punctured torus, for $t=t_{\Delta}$ and $q=1$,

$$
\langle D\rangle_{\text {Brac }}=4^{\mathrm{wt}(D)} \vartheta_{g(D)}
$$

where $\mathrm{wt}(D):=\left[-\sum g_{i}\right]_{+}$for the g-vector $g(D)=\left(g_{i}\right)$ of D.

- [Zho20] [notched arc] \neq theta function for 1-punctured torus.

Result: Atomicity

Theorem 6

- For unpunctured Σ, the quantum bracelets is the atomic basis for $\operatorname{Sk}(\Sigma)$.
- For any Σ, at $q=1$, the bracelets form the atomic basis for $\operatorname{Sk}(\Sigma)$ with respect to the ideal triangulation atlas (the triangulation only consists of arcs without tagging)

Proof: Ideas

Ideas for verifying that $\langle D\rangle_{\text {Brac }}$ is a theta function.
(1) We can cut the surface and work locally

- Skein relations are local. Need some work for theta functions.
(2) (Key) $[L]$ and, more generally, $\langle w L\rangle_{\text {Brac }}$ is a theta function
- Use Dehn twists to choose good Δ.
- Verify the Chebyshev recursion.

Figure: Dehn twist around L

(3) In general, $\langle D\rangle_{\text {Brac }}$ is a theta function (not easy)

- The arguments follow the spirit of step 2
- Detailed arguments are subtle and lengthy.

Proof: [L] Is a Theta Function

- Cut out a subsurface Σ_{L} containing L and work locally.
- We first prove that $[L]$ is the theta function $\vartheta_{g(L)}$, where $g(L)$ is the leading degree (g-vector, incoming direction)
- Graphical calculus + atomicity of theta functions.

Proof: $\langle w L\rangle_{\text {Brac }}$ Is a Theta Function

A theta function ϑ_{g} can be computed

- as a Laurent polynomial $\vartheta_{g, \Delta^{\prime}}$, by choosing any reference seed $t_{\Delta^{\prime}}$ (choose a generic base point in the chamber for $t_{\Delta^{\prime}}$).
- $\vartheta_{g, \Delta^{\prime}}$ can be computed order by order (view the initial cluster Poisson variables $X_{k}\left(t_{\Delta}\right)$ as infinitesimal)

Chebyshev recursion

For some Δ^{\prime}, we have $\vartheta_{g(w L), \Delta^{\prime}}=T_{w}\left(\vartheta_{g(L), \Delta^{\prime}}\right)$.

- Start with any Δ. Applying the Dehn twist around L to Δ for $N \gg 1$ times to obtain Δ^{\prime}. (a base point close to $g(L)$ [Yur20])
- Then $\vartheta_{g(w L), \Delta^{\prime}}=A^{w \cdot g(L)}+A^{-w \cdot g(L)}+$ higher order terms.
- $\left(\vartheta_{g(L), \Delta^{\prime}}\right)^{w}=\sum v_{s, w} \vartheta_{g(s L), \Delta^{\prime}}$ has the same coefficients as the Chebyshev polynomials $\left(z+z^{-1}\right)^{w}=\sum v_{s, w}^{\prime} T_{s}\left(z+z^{-1}\right)$

References I

[AK17] Dylan GL Allegretti and Hyun Kyu Kim, A duality map for quantum cluster varieties from surfaces, Advances in Mathematics 306 (2017), 1164-1208.
[BW11] Francis Bonahon and Helen Wong, Quantum traces for representations of surface groups in s/2($\mathbb{C})$, Geometry \& Topology 15 (2011), no. 3, 1569-1615.
[DM21] Ben Davison and Travis Mandel, Strong positivity for quantum theta bases of quantum cluster algebras, Inventiones mathematicae (2021), 1-119, arXiv:1910. 12915.
[FG06] Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), no. 103, 1-211, arXiv:math/0311149.

References II

[FST08] Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), no. 1, 83-146.
[GHKK18] Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich, Canonical bases for cluster algebras, Journal of the American Mathematical Society 31 (2018), no. 2, 497-608, arXiv:1411. 1394.
[Man17] Travis Mandel, Theta bases are atomic, Compositio Mathematica 153 (2017), no. 6, 1217-1219, arXiv:1605. 03202.
[MSW13] Gregg Musiker, Ralf Schiffler, and Lauren Williams, Bases for cluster algebras from surfaces, Compositio Mathematica 149 (2013), no. 02, 217-263, arXiv:1110. 4364.

References III

[Mul16] Greg Muller, Skein and cluster algebras of marked surfaces, Quantum topology 7 (2016), no. 3, 435-503, arXiv:1204.0020.
[Qin14] Fan Qin, t-analog of q-characters, bases of quantum cluster algebras, and a correction technique, International Mathematics Research Notices 2014 (2014), no. 22, 6175-6232, arXiv:1207.6604, doi:10.1093/imrn/rnt115.
[Qin17] \qquad , Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Mathematical Journal 166 (2017), no. 12, 2337-2442, arXiv:1501. 04085.

References IV

[Thu14] Dylan Paul Thurston, Positive basis for surface skein algebras, Proceedings of the National Academy of Sciences 111 (2014), no. 27, 9725-9732, arXiv:1310.1959.
[Yur20] Toshiya Yurikusa, Density of g-vector cones from triangulated surfaces, International Mathematics Research Notices 2020 (2020), no. 21, 8081-8119.
[Zho20] Yan Zhou, Cluster structures and subfans in scattering diagrams, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 16 (2020), 013.

