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Overview

Surface with marked points Σ

Skein algebra Sk(Σ) = {unions of curves}
{bracelets} is a basis [FG06][MSW13][Thu14].

Triangulation ∆ 99K a seed t∆ 99K upper cluster algebra
U(t∆) [FST08], often:

{quantum theta func.} is a basis of U(t∆) [GHKK18][DM21]
[Mul16] Unpunctured Σ:

U(t∆) = localization of Sk(Σ) at the boundary arcs

Roughly speaking, for general Σ,
quantum bracelets = quantum theta functions.
(Visualization of theta functions)

Exception: once-punctured torus
=⇒ atomicity conjecture: the bracelets basis is the minimal
positive basis.
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Toy Model

k = Z (quantum case k = Z[q±
1
2 ])

Surface Σ: 4-gon. Triangulations ∆
flip←→∆′
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′
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Skein alg Sk :=⊕D:union of curvesk[D]/(skein relations)
multiplication: ∪
k-basis={mono. in A1, . . . ,A5} ∪ {mono. in A′1,A2, . . . ,A5}
k[A2, . . . ,A5]-basis {Ad

1}∪{(A′1)d}
(Upper) cluster alg U := k[A±1 , . . . ,A

±
5 ]∩k[(A′1)±, . . . ,A±5 ]

triangulation ∆ = {A1, . . . ,A5}: toric local chart of SpecU
U = Sk[A−1

2 , . . . ,A−1
5 ]
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Cluster Algebras from Quivers

Dual of triangulations: quivers
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In general, we can construct cluster algebras from quivers:
triangulation 99K seed s = (Q,(Ai )i∈Q0) (∼local chart)

vertices of Q are unfrozen/frozen (internal/boundary)

flip 99K mutation (∼ change local charts)
Iterate mutations =⇒ all seeds =⇒ U

A seed is of full rank ⇐⇒ it can be quantized
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Skein Algebra on Surfaces

Σ = (S ,M), S : topological surface, M: marked points
each connected component of ∂S contains ≥ 1 marked points
M\∂S : punctures

curve Ci : ending at M or a closed loop
diagram D: a union of curves. [D] isotopy class

considered up to isotopy (fixing M and crossings)
denote D = ∪wjCj where wj is the weight (multiplicity) of Cj

called internal if it does not contain a boundary arc
called simple if not reducible by Skein relations

Skein algebra Sk(Σ) :=⊕k[D]/(Skein relations)

If unpunctured, ∃ quantization:
[D]∗ [D ′] = [D put above D ′], q-Skein relations
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From Skein Algebras to Cluster Algebras

Arc γ : simple curve ending at M
γ1,γ2 are compatible if they have no crossing

Punctured case: tagged arc [FST08]
tagged plain or notched at the punctured ending
notion of compatibility (no-crossing, compatible tagging)

Ideal/tagged triangulation ∆: a maximal collection of
non-isotopic compatible arcs/tagged arcs.
∆ 99K seed t∆ [FST08]

cluster variables: γ ∈∆ (frozen: boundary)
quiver: oriented “dual graph” of ∆
if unpunctured 99K quantum seed t∆ [Mul16]

Sk(Σ) := localization of Sk(Σ) at the boundary arcs, then
Sk(Σ)⊂U(t∆).

[Mul16] For most unpunctured Σ, they coincide.
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Example: annulus

A3A4

A

B
A1

A2

annulus = area bounded by A3,A4.
initial triangulation ∆ = {A1,A2}∪{A3,A4},

t∆ is associated with a Kronecker quiver

Infinite many triangulations (by rotating boundary)
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Dictionary

Topology (SL2-local system on Σ) Cluster theory
tagged triangulation ∆ seed t∆

tagged arc cluster variable
boundary arc coefficients/frozen variable
∪γi for γi ∈∆ cluster monomial

union multiplication
flip mutation
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Bracelet Basis (Theta Basis)

A3A4

A

B
A2

A1

Brac(2,L)

Brac(w ,L) a bracelet loop with w −1 self-crossings.
A bracelet diagram BracD=

⋃
compatible arcs and Brac(w ,L)

Sk(Σ) has the k[b1,b2]-basis {[internal BracD]}
= {[internal cluster monomials]}∪{[Brac(w ,L)]|w > 0}
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Chebyshev Polynomials

Chebyshev polynomial of the first kind Tw ( ), w ≥ 0:
Tw (z + z−1) = zw + z−w

T0(z) = 2, T1(z) = z , z ·Tw (z) = Tw+1(z) +Tw−1(z)
tr(Mw ) = Tw (trM) for M ∈ SL2

Theorem 1 ([MSW13])

[Brac(w ,L)] = Tk([L]).

Example 2

[Brac(2,L)] = [L]2−2

Fan Qin Bracelets 10 / 20



Overview Algebras on Surfaces Constructions and Results

Atomicity

An element in U is universally positive if, with respect to any
seed, its Laurent coefficients belong to k+ = N (or N[q±

1
2 ]).

A basis of U is said to be atomic if:
it consists of universally positive elements
any universally positive element is a k+-sum of its elements.

The atomic basis is unique if it exists.

Conjecture [FG06][MSW13]

Bracelets form the atomic basis (in some settings)

Theorem 3 ([GHKK18][Man17][Yur20])

If no component of Σ is a once-punctured closed surface, then the
theta functions form a basis for U . Moreover, this theta basis is
atomic.
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Similar Seeds

Definition 4 ([Qin14, Qin17])

Two seeds t, t ′ are similar if they share the same unfrozen full
subquiver.

=⇒ U(t) and U(t ′) share similar structure and properties
For experts: an element in U(t) is similar to an element in
U(t ′) if they share the same unfrozen g -vector and the same
F -polynomial.

Examples include the cluster monomials
Assume t is of full rank, if we have a good basis for U(t), then
the similar elements form a spanning set for U(t ′).

Assume t is similar to t∆

We say U(t) is of type Σ
If we have defined a bracelet element in U(t∆), the similar
element for U(t) is also called a bracelet element.
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Quantization

For unpunctured Σ:
We can t = t∆, quantize Sk(Σ), t∆ as in [Mul16]

For Σ with punctures: Sk(Σ) and t∆ cannot be quantized!
We can choose a seed t similar to t∆ (such as the principal
coefficients) and quantize t instead.
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Tagged Bracelet Elements for Upper Cluster Algebras

A tagged bracelet diagram D = (∪kiγi )
⋃

(∪wjLj) consisting of
compatible tagged arcs and bracelet loops.
Construct (quantum) tagged bracelet 〈D〉Brac in U(t):

〈γi 〉Brac: the (quantum) cluster variable corresponding to the
tagged arc γi

Exception: tagged notched arcs on a 1-punctured closed
surface are NOT cluster variables. Need definition.

〈wjLj 〉Brac : take the quantum trace of Brac(wj ,Lj )
([BW11][AK17] define it in the cluster Poisson algebra,
consider its image in U(t))
〈D〉Brac = qα (∏〈γi 〉kiBrac)

d
(∏〈wjLj 〉Brac), where α is chosen to

guarantee the bar-invariance q 7→ q−1.
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Tagged Notched Arcs for Once-Punctured Closed Surfaces

For q = 1. Consider a finite cover π : Σ̃→ Σ. The lift of a
tagged notched arc γ corresponds to a cluster variable x .
Define the bracelet element for γ in U(t) as

[γ] = πx .

Justified by the Teichmüller theory (lambda length).
Assume Σ is NOT a once-punctured torus.

Obstruction: π does NOT work for q-case
At q = 1, can show [γ] is a theta function θ .
Donaldson-Thomas transformation = wall-crossing from Rn

>0
to Rn

<0 in the scattering diagram [GHKK18]
=⇒ DT ( ) sends [γ] to tagged plain arc [γ�] at q = 1.
Define [γ] such that we still have

DT ([γ]) = [γ�].
This will force [γ] = θ .

Better definition?
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Result: Visualization of Theta Functions.

Assume Σ connected for simplicity. Choose a (quantum) seed
t of type Σ.

Theorem 5
∀ tagged bracelet diagram D, 〈D〉Brac is a quantum theta function
ϑg(D) in U(t) iff one the following is satisfied:

Σ is NOT a 1-punctured torus, or
Σ is a 1-punctured torus, but D does not contain notched arcs

If Σ is 1-punctured torus, for t = t∆ and q = 1,

〈D〉Brac = 4wt(D)ϑg(D)

where wt(D) := [−∑gi ]+ for the g -vector g(D) = (gi ) of D.

[Zho20] [notched arc] 6= theta function for 1-punctured torus.
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Result: Atomicity

Theorem 6
For unpunctured Σ, the quantum bracelets is the atomic basis
for Sk(Σ).
For any Σ, at q = 1, the bracelets form the atomic basis for
Sk(Σ) with respect to the ideal triangulation atlas (the
triangulation only consists of arcs without tagging)
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Proof: Ideas

Ideas for verifying that 〈D〉Brac is a theta function.
1 We can cut the surface and work locally

Skein relations are local. Need some work for theta functions.
2 (Key) [L] and, more generally, 〈wL〉Brac is a theta function

Use Dehn twists to choose good ∆.
Verify the Chebyshev recursion.

Figure: Dehn twist around L

3 In general, 〈D〉Brac is a theta function (not easy)
The arguments follow the spirit of step 2

Detailed arguments are subtle and lengthy.
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Proof: [L] Is a Theta Function

Cut out a subsurface ΣL containing L and work locally.
We first prove that [L] is the theta function ϑg(L), where g(L)
is the leading degree (g -vector, incoming direction)

Graphical calculus + atomicity of theta functions.
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Proof: 〈wL〉Brac Is a Theta Function

A theta function ϑg can be computed
as a Laurent polynomial ϑg ,∆′ , by choosing any reference seed
t∆′ (choose a generic base point in the chamber for t∆′).
ϑg ,∆′ can be computed order by order (view the initial cluster
Poisson variables Xk(t∆) as infinitesimal)

Chebyshev recursion

For some ∆′, we have ϑg(wL),∆′ = Tw (ϑg(L),∆′).

Start with any ∆. Applying the Dehn twist around L to ∆ for
N� 1 times to obtain ∆′. (a base point close to g(L) [Yur20])
Then ϑg(wL),∆′ = Aw ·g(L) +A−w ·g(L) +higher order terms.
(ϑg(L),∆′)

w = ∑νs,wϑg(sL),∆′ has the same coefficients as the
Chebyshev polynomials (z + z−1)w = ∑ν ′s,wTs(z + z−1)
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