Azumaya representations of generalized skein algebras

Hiroaki Karuo (Gakushuin University)

based on joint work w/ Zhohao Wang
(Nanyang Technological Univ. & Univ. of Groningen)

Goal. Some applications from representation theory of skein alg’s.
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Knot theory |« || St — ¥ x (—=1,1) X: oriented surface

knot = 1-component link

C identify C
pd N
<— 7
@ by isotopy
continuous deformation of homeomorphisms

L1=1L
Original question. Given two links L; & Lo, show bor 77
Ly # Lo

To show L1 = Lo, use isotopy concretely.

However, we cannot conclude L1 # Lo only with deformation.

Use an invariant to show Lj # Lo

a map {isotopy classes of links} — Z, Z[qg™], etc.

;é@:@jl



Jones polynomial and Kauffman bracket »: oriented surf.

q € C\{0}

link in¥ x(—1,1) G
\I/project

diagram on > x {0}

Kauffman brakcet ( X ) = q( ) ( )+ q Y /\i )
[moatyes=p  (DUO)=(~¢ = a D)
Jones polynomial (an invariant of links)

Rmk. Kauffman brakcet is an invariant of framed links

= links \x ith normal vector fields)

C underlying link
(j\% with vertical framing m i‘(:ﬁ%’%



SL(2)-skein algebras X oriented surf., ¢ € C\ {0}
Kauffman bracket in knot theory 7S

ialgebralze w/m (9\/)

Sy(22) = Cisotopy classes of framed links in > x (—1,1))/(rel’s)
SL(2)-skein algebra of X
(2) asdiagra?n% / :q><+q_1x

multiplication = stackmg —?—q2

87
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In general, Sy(2 ) is NOT commutative.
Peripheral loops are central. CeD

Q. Are there any other central elements?




Central elements in skein algebras

Ty(x)=x - Ty 1(x) = Ty_o(x), Ti(z)==z, Ty(zr)=2
1st Chebyshev poly.

\/ 1 parallel copies (i) y
AN ERVZa N
i i

Ex. T3(z)=2° -3z & z

Thm. [Frohman-Kania-Bartoszynska—Lé 19]
q : primitive N-th root of 1 (N: odd)

Z(55(X)) is generated by T (z) (z: loop) and peripheral loops.




almost Azumaya algebras
A: C-alg., Z(A): its center
A: Azumaya algebra = Vm € MaxSpec(Z(A)), A/mA = Mp(C)

|| matrix algebra

{maximal ideals of Z(A)}

= Mp(C)

(almost) continuous family of M p(C

o B>

almost Azumaya algebra = 4 Azumaya locus ¢ MaxSpec(Z(A))

Zariski open dense

Mp(C) has the unique irrep. C”

Q. What is the outside of Azumaya locus?



Unicity theorem A : almost Azumaya C-alg.

Thm. [Brown-Gordon] [Frohman-Kania-Bartoszynska—Lé 19]

MaxSpec(Z(A))
1
(1) x: {finite dim. irrep’s OfU)A}/conj. o Horuljl@_alg(Z(A), C)
p] X, (central character)

(2) dAzm(A): a Zariski open dense subset of MaxSpec(Z(A)) s.t.
(a) V7 € Azm(A), x71(7) = {p,;} and dim p, = Pl-degree of A
(b) V7 & Azm(A), dim. of irrep. in x (1) < Pl-degree of A

dim of irrep.a

For 7 € Azm(A) Pl-degree f--7----- e
is call ¢
o 1s called : : |
Azumaya representation ¢ | .

Azm(A)  MaxSpec(A)



Sufficient condition

A is Azumaya & A s finitely generated projective Z(A)-module
& A®za) AP — Endz4)A is isom.
a®b — (r— arb)

. def — .
A is almost Azumaya <= a localization of A is Azumaya



Sufficient condition

A s Azumayag A is finitely generated projective Z(A)-module
& ARz AP — Endz4)A is isom.
a®b — (r+— arb)

. def : : :
A is almost Azumaya <= a localization of A is Azumaya

(1) A is finitely generated as C-algebra
(2) A has no zero-divisors = A is almost Azumaya

(3) A is finitely generated as Z(A)-module

Fact.
The cardinality of the minimal generating set of A as Z(A)-module
— (Pl-degree of A)”.



Skein alg. & quantum cluster alg. 'a'

Setting. X has J-punctures & NO interior punctures

Ptolemy commutative cluster al %quantize - quantum
relation " algebralze ” & “cluster alg.
N
ab=ce+d f
; j/ [Muller’16]
quantize
\Z
> < algebraize generalized
— 4 ta /\% > “skein alg.

_

So(23) — stated skein alg. of | | A — quantum Teichmiiller sp.
— - Z —] E‘ E — ‘(TA

I - 3 d-punc. = ker(tr7') # 0

o Make the target space larger & modify trqA extended ver.

o Take S5'(%)/ker(try) reduced ver.




Jones poly.-like stated SL(2)-skein alg.

2-web: embedded oriented framed uni- bivalent graphs and loops
with only sink & source in ¥ x (—1

s.t. vertical framing at umvalent @ -
different heights on 0 edge x(—1,1) \'\,

stated 2-web = 2-web with {univalent Vertlces} — {+, -}

S5'(22) = C(isotopy classes of stated 2-webs in ¥ x (—1,1))/(rel’s)
stated SL(Q)—Skein algebra of XJ equivalent to the previous one

¢ R -t X =a-aH il Fe=gpre
O -y > (T2 -2,

and rel’s around 02



stated SL(2)-skein to stated SL(n)-skein
SL(2) SL(n)

loop ) )

n n
— —
graph > o< <—o—> \W W n-web

uni-bivalent uni-n-valent
states {+,—} {1,2,...,n}
g-parameter q'/? g/
relations in the last slide in the next slide

S3H(X) = C(isotopy classes of stated n-webs in ¥ x (—1,1))/(rel’s)
stated SL(n)-skein algebra of X



Defining relations of stated SL(n)-skein alg.

—_—
qn\\-—q"// (g—q¢") .,

2 O = 3 O =Tl

q—qt

: : n(n 1) ength of o : :
g ><§ B R O <
n+1 20 length of o : 7
=q T ) es,(—0) -2
n—i =1
(6) <jj=éﬂkm qz )
i . o 5 i
(8),0’ j=qn" 5j<i(q_q ).o_j+qw_o_i .

o and e denote opposite orientations




Defining relations of stated SL(n)-skein alg.

: ] —2n” length of o : 7
: _ 1 o gthofo |
(5) >| a > (=) 2

oeS,), 7!

Y

(M) ‘ = (=)' Tl _ |,
1=1

Y

Important (5) & (7) = an n-web = prod. and sum of arcs

/. primitive m/-th root of 1

q
Thm. [Bonahon-Higgins'23]
Threading of a loop by ‘Chebyshev polynomials” € Z(S5(X0))

Prop. [Wang'23] The ‘m/-th power’ of an arc € Z(S¥ (X))



Why stated SL(n)-skein alg.?
quantum coordinate ring

° S;t( ) = OQ<SL(R)> [Costantino-Lé"22](n = 2)
[Lé-Sikora’21](n > 3)

°) = S > . = S¥(X) = the quantum moduli alg.
[Alekseev—Grosse—Schomerus’95)]

[Baseilhac—Faitg—Roche’23]

e J extended quantum trace map

tr s S3(3) — extended Fock-Goncharov alg. [Fock-Goncharov'06,'09]
in (quantum) higher Teichmiiller theory

o % has O0-punctures and NO interior punctures = trqA is injective

Today’s setting  [Bonahon-Wong'l1, Le’'19](n=2),

’a. [Kim’20,’21, Douglus’24|(n=3), [Le-Yu'23|(n >4)



Quantum tori in higher Teichmiiller theory

P: m X m anti-symmetric matrix
T<P) ‘= C<xiﬂv IEH’ T >xrjz:zl>/(xixj — qPijxjxi)
quantum torus
triangulation w— weighted quiver w—> anti-symm. matrix
A . Qf = (i o> j—H#i e j)
\\n X weight of 7 e—e

1N2 extended Fock—Goncharov alg.
Thm. [Le Yu23) A,(A) — AP(A) C X, (A) == T(Q?)

Rmk. 3 anti-symm. matrix P2 s.t. A,(A) := T(P?)
extended A-quantum torus

sandwiched property. A7 (A) C S () C Ay (A)



Unicity theorem for stated SL(n)-skein alg.

Thm. [Le Yu23] S5(X) satisfies (1) & (2)

The rest is (3) finite generation as Z(S%(X))-module

Thm 1. [KW24] S3(X) is finitely generated as Z(S5(X))-module
= Unicity thm. can be applied to S3'(X)

Strategy. Show finite generation of S&*(X) over the subalg.
generated by m/-th powers of arcs

Prop. [Wang'23]  ¢*/™: a primitive m/-th root of 1
The m/-th power of an arc € Z(S¥ (X))

Next. We compute the Pl-degree
V1 € Azm(A), F!lirrep. p, and dim p, = Pl-degree of A
'minimal generating set of A as Z(A)-module| = (Pl-degree of A)’



Comparing centers

P: m X m anti-symmetric matrix
T(P) = Clzy, 23", a3) / (wiwj = ¢ vjzi)
TH(P) = C(xy,z9,- -+ , )/ same relation
1ts positive part
T*(P%) T(P*)
Thm. [Lé-Yu'23] AT (A) C SH(E) C Ay (A)
vz =z = 2x; =2 'z implies Z(SSHY)) C Z(A,(A)),
Z(5(X)) = S (E) N Z(A,(A))

Thm 2. [KW24] ¢Y™: a primitive m/-th root of 1
We described Z(A,(A)) explicitly. We also described Z(S5(Y)).

Prop.[KW'24] Thm. implies Pl-deg. of SF'(X) = Pl-deg. of A,(A)




PI-degree = the highest dim. among finite dim. irrep’s

Iminimal generating set of A as Z(A)-module| = (Pl-degree of A)’
Strategy.

HPA, AQ(A) = T(PA> quantum torus

Step 1. Decompose P~ and describe some block matrices explicitly
Step 2. Describe the conditions of the center as vectors

Step 3. Take the quotient and compute the cardinality

r(2) == #(d-punctures) + #(components of O%) + 2g — 2
t: # components of 9 with even number of O-punctures

Thm 3. [KW24]
Pl-deg. of S*(X) = Pl-deg. of A, (A) = Vdr®-tmn*=1r(Z)—t(n-1)

Rmk. For n = 2| it recovers [Yu'23]. d = ged(m’,n), m=m'/d




Summary
Thm 1. S5(Y) is finitely generated as Z(S3(X))-module

Unicity thm. {finite dim. irrep’s of A}/conj. —» MaxSpec(Z(A))

dim of irrep. A

Pl-degree f-—7----- S

Azm(A)  MaxSpec(A)

Aj(A) C §J(E) C A(A) = Z(S5,1 (X)) = SHE) N Z(Ay (X, )
Thm 2. ¢Y™: a primitive m/-th root of 1
We described Z(A,(A)) explicitly. We also described Z(S5(Y)).

Thm 3. Pl-deg. of S*(X) = Vdr®) —tp > =1)r(E)—tn-1)
d = ged(m/,n), m=m'/d




Application & similar results

We can access to representation theory of quantum moduli alg.

’Q\’ B ’/'(ﬁ

Y= (%02 O = S¥(Y) = the quantum moduli alg.
\, -

—st

S, (2) = 8(X)/(kernel of (original) quantum trace map)
reduced stated SL(n)-skein alg.

Injective quantum trace map
—A st — >~ —bl -
tr, . S, (8) = A(A) — X (A) C Xy(A)
original Fock-Goncharov alg.
in (quantum) higher Teichmiiller sp.
Thm 4. Similar results for reduced stated SL(n)-skein alg’s

almost Azumaya, Z(A,(A)), Z(ES(Z)), Pl-deg.



What’s next?

—st

S, (2): reduced stated SL(n)-skein algebra of 3.

Each conn. comp. of ¥ has 0% # () and NO interior punctures
today’s setting

n =2 gzt(Z) = quantum cluster alg. [Muller'16]

n=3 3?(2) C quantum cluster alg. [Ishibashi-Yuasa'22]

Conj. SH(Y) = quantum cluster alg.
3

—st

S, (2) = quantum cluster alg. for any n ?
if it is true = representation theory of quantum higher cluster alg.

Prob. e Describe the Azumaya locus explicitly.

e Give a geometric meaning of Auzmaya representations.



