Azumaya representations of generalized skein algebras

Hiroaki Karuo (Gakushuin University) based on joint work w/ Zhohao Wang (Nanyang Technological Univ. & Univ. of Groningen)

Goal. Some applications from representation theory of skein alg.'s. **Contents.**

- From knot theory to skein algebras
- Importance of centers in representation theory
- Stated SL(n)-skein alg.'s in quantum higher Teichmüller sp.'s
- How to compute the highest dimension among irrep.'s

Knot theory link $| | S^1 \hookrightarrow \Sigma \times (-1, 1)$ Σ : oriented surface knot = 1-component link) $\overleftarrow{\text{identify}}_{\text{by isotopy}}$ continuous deformation of homeomorphisms **Original question.** Given two links $L_1 \& L_2$, show $\begin{cases} L_1 = L_2 \\ \text{or} \\ L_1 \neq L_2 \end{cases}$ To show $L_1 = L_2$, use isotopy concretely. However, we cannot conclude $L_1 \neq L_2$ only with deformation. Use an **invariant** to show $L_1 \neq L_2$ a map {isotopy classes of links} $\rightarrow \mathbb{Z}, \mathbb{Z}[q^{\pm 1}], \text{ etc.}$

Jones polynomial and Kauffman bracket Σ : oriented surf. $q \in \mathbb{C} \setminus \{0\}$ link in $\Sigma \times (-1, 1)$ project diagram on $\Sigma \times \{0\}$ Kauffman brakcet $\langle \mathbf{X} \rangle = q \langle \mathbf{Y} \rangle + q^{-1} \langle \mathbf{X} \rangle$ $\langle D \sqcup \bigcirc \rangle = (-q^2 - q^{-2}) \langle D \rangle$ $\int \text{modify } \& \Sigma = \mathbb{R}^2$ Jones polynomial (an invariant of links) **Rmk.** Kauffman brakcet is an invariant of framed links (= links with normal vector fields)underlying link with vertical framing

In general, $S_2(\Sigma)$ is NOT commutative. Peripheral loops are central.

Q. Are there any other central elements?

Central elements in skein algebras

 $T_N(x) = x \cdot T_{N-1}(x) - T_{N-2}(x), \quad T_1(x) = x, \quad T_0(x) = 2$ 1st Chebyshev poly.

<u>**Thm.</u>** [Frohman–Kania-Bartoszynska–Lê'19] q: primitive N-th root of 1 (N: odd) $\mathcal{Z}(S_2(\Sigma))$ is generated by $T_N(z)$ (z: loop) and peripheral loops.</u>

Q. What is the outside of Azumaya locus?

Unicity theorem A: almost Azumaya \mathbb{C} -alg. Thm. [Brown–Gordon] [Frohman–Kania-Bartoszynska–Lê'19] $MaxSpec(\mathcal{Z}(A))$ (1) χ : {finite dim. irrep's of A}/conj. \longrightarrow Hom_{\mathbb{C} -alg}($\mathcal{Z}(A), \mathbb{C}$) $[\rho]$ χ_{ρ} (central character) (2) $\exists \mathsf{Azm}(A)$: a Zariski open dense subset of $\operatorname{MaxSpec}(\mathcal{Z}(A))$ s.t. (a) $\forall \tau \in \mathsf{Azm}(A), \quad \chi^{-1}(\tau) = \{\rho_{\tau}\} \text{ and } \dim \rho_{\tau} = \mathsf{PI-degree of } A$ (b) $\forall \tau \notin \mathsf{Azm}(A)$, dim. of irrep. in $\chi^{-1}(\tau) < \mathsf{PI}$ -degree of A dim of irrep.∧ For $\tau \in \mathsf{Azm}(A)$ PI-degree ρ_{τ} is called Azumaya representation MaxSpec(A)Azm(A)

Sufficient condition

A is Azumaya $\stackrel{\text{def}}{\Longrightarrow} A$ is finitely generated projective $\mathcal{Z}(A)$ -module $\& A \otimes_{\mathcal{Z}(A)} A^{\text{op}} \to \text{End}_{\mathcal{Z}(A)} A$ is isom. $a \otimes b \mapsto (r \mapsto arb)$

A is almost Azumaya $\stackrel{\text{def}}{\iff}$ a localization of A is Azumaya

Sufficient condition

A is Azumaya $\stackrel{\text{def}}{\longleftrightarrow} A$ is finitely generated projective $\mathcal{Z}(A)$ -module & $A \otimes_{\mathcal{Z}(A)} A^{\mathrm{op}} \to \mathrm{End}_{\mathcal{Z}(A)} A$ is isom. $a \otimes b \mapsto (r \mapsto arb)$

A is almost Azumaya $\stackrel{\text{def}}{\longleftrightarrow}$ a localization of A is Azumava

- (1) A is finitely generated as C-algebra
 (2) A has no zero-divisors
- (2) A has no zero-divisors

 $\Rightarrow A \text{ is almost Azumaya}$

(3) A is finitely generated as $\mathcal{Z}(A)$ -module

Fact.

The cardinality of the minimal generating set of A as $\mathcal{Z}(A)$ -module $= (\text{PI-degree of } A)^2.$

Jones poly.-like stated SL(2)-skein alg.

2-web: embedded oriented framed uni-bivalent graphs and loops with only sink & source in $\Sigma \times (-1, 1)$ s.t. vertical framing at univalent

different heights on ∂ edge $\times (-1, 1)$

stated 2-web = 2-web with {univalent vertices} \rightarrow {+, -} $S_2^{st}(\Sigma) = \mathbb{C}\langle \text{isotopy classes of stated 2-webs in }\Sigma \times (-1, 1) \rangle / (\text{rel's})$ stated SL(2)-skein algebra of Σ equivalent to the previous one

$$q^{\frac{1}{2}} \swarrow - q^{-\frac{1}{2}} \Join = (q - q^{-1}) \uparrow \uparrow, \qquad \checkmark = q^{\frac{3}{2}} \checkmark,$$

$$\bigcirc = (q + q^{-1}) \land, \qquad \checkmark \checkmark = -q \left(\checkmark - q^{-\frac{1}{2}} \leftthreetimes\right),$$
and rel's around $\partial \Sigma$

stated $\operatorname{SL}(n)$ -skein algebra of Σ

 \circ and \bullet denote opposite orientations

Defining relations of stated SL(n)-skein alg.

Important (5) & (7) \Rightarrow an *n*-web = prod. and sum of **arc**s

 $q^{1/n}$: a primitive m'-th root of 1

Thm. [Bonahon–Higgins'23]

Threading of a loop by 'Chebyshev polynomials' $\in \mathcal{Z}(\mathcal{S}_n^{\mathrm{st}}(\Sigma))$ **Prop.** [Wang'23] The 'm'-th power' of an arc $\in \mathcal{Z}(\mathcal{S}_n^{\mathrm{st}}(\Sigma))$

Why stated SL(n)-skein alg.?

 $) \cong \mathcal{O}_q(\mathrm{SL}(n))$

$$\label{eq:costantino-Le} \begin{split} & [\text{Costantino-Le}'22](n=2) \\ & [\text{Le}-\text{Sikora}'21](n\geq3) \end{split}$$

• $\mathcal{S}_n^{\mathrm{st}}($

 $\Rightarrow S_n^{\rm st}(\Sigma) \cong \text{the quantum moduli alg.}$ [Alekseev-Grosse-Schomerus'95][Baseilhac-Faitg-Roche'23]

• \exists extended quantum trace map

 $\operatorname{tr}_q^{\Delta} \colon \mathcal{S}_n^{\operatorname{st}}(\Sigma) \to \operatorname{extended} \operatorname{Fock-Goncharov} \operatorname{alg.} [Fock-Goncharov'06,'09]$ in (quantum) higher Teichmüller theory

• Σ has ∂ -punctures and NO interior punctures \Rightarrow tr_q^{Δ} is injective

Today's setting

[Bonahon–Wong'11, Lê'19](n=2), [Kim'20,'21, Douglus'24](n=3), [Lê–Yu'23] $(n \ge 4)$

Quantum tori in higher Teichmüller theory

P: $m \times m$ anti-symmetric matrix

Λ

 $\mathbb{T}(\mathsf{P}) := \mathbb{C}\langle x_1^{\pm 1}, x_2^{\pm 1}, \cdots, x_m^{\pm 1} \rangle / (x_i x_j = q^{\mathsf{P}_{ij}} x_j x_i)$ quantum torus

triangulation \longrightarrow weighted quiver \longrightarrow anti-symm. matrix

$$\begin{array}{l} \mathsf{Q}_{ij}^{\Delta} := (\# i \dashrightarrow j - \# i \dashrightarrow j) \\ \times \text{ weight of } i \dashrightarrow j \end{array}$$

extended Fock–Goncharov alg.

<u>**Thm.</u></u> [Lê–Yu'23] \mathcal{A}_q(\Delta) \xrightarrow{\cong} \mathcal{X}_q^{\mathrm{bl}}(\Delta) \subset \mathcal{X}_q(\Delta) := \mathbb{T}(\mathsf{Q}^{\Delta})</u>**

<u>**Rmk.</u></u> \exists anti-symm. matrix \mathsf{P}^{\Delta} s.t. \mathcal{A}_q(\Delta) := \mathbb{T}(\mathsf{P}^{\Delta}) extended \mathcal{A}-quantum torus sandwiched property. \mathcal{A}_q^+(\Delta) \subset \mathcal{S}_n^{\mathrm{st}}(\Sigma) \subset \mathcal{A}_q(\Delta)</u>** Unicity theorem for stated SL(n)-skein alg. <u>Thm.</u> [Lê–Yu'23] $\mathcal{S}_n^{st}(\Sigma)$ satisfies (1) & (2) The rest is (3) finite generation as $\mathcal{Z}(\mathcal{S}_n^{st}(\Sigma))$ -module <u>Thm 1.</u> [KW'24] $\mathcal{S}_n^{st}(\Sigma)$ is finitely generated as $\mathcal{Z}(\mathcal{S}_n^{st}(\Sigma))$ -module \Rightarrow Unicity thm. can be applied to $\mathcal{S}_n^{st}(\Sigma)$

Strategy. Show finite generation of $\mathcal{S}_n^{\mathrm{st}}(\Sigma)$ over the subalg. generated by m'-th powers of arcs

 $\frac{\mathbf{Prop.}}{\mathbf{The} \ m'\text{-th power of an arc}} \in \mathcal{Z}(\mathcal{S}_n^{\mathrm{st}}(\Sigma))$

Next. We compute the PI-degree $\forall \tau \in \mathsf{Azm}(A), \exists ! \text{ irrep. } \rho_{\tau} \text{ and } \dim \rho_{\tau} = \mathsf{PI-degree of } A$ |minimal generating set of A as $\mathcal{Z}(A)$ -module| = ($\mathsf{PI-degree of } A$)²

Comparing centers

P: $m \times m$ anti-symmetric matrix $\mathbb{T}(\mathsf{P}) := \mathbb{C}\langle x_1^{\pm 1}, x_2^{\pm 1}, \cdots, x_m^{\pm 1} \rangle / (x_i x_j = q^{\mathsf{P}_{ij}} x_j x_i)$ $\mathbb{T}^+(\mathsf{P}) := \mathbb{C}\langle x_1, x_2, \cdots, x_m \rangle / \text{ same relation}$ its positive part

 $\mathbb{T}^{+}(\mathsf{P}^{\Delta}) \qquad \mathbb{T}(\mathsf{P}^{\Delta})$ $\underline{\mathbf{Thm.}} \text{ [Lê-Yu'23] } \mathcal{A}_{q}^{+}(\Delta) \subset \mathcal{S}_{n}^{\mathrm{st}}(\Sigma) \subset \mathcal{A}_{q}(\Delta)$ $x_{i}z = zx_{i} \Rightarrow zx_{i}^{-1} = x_{i}^{-1}z \qquad \text{implies } \mathcal{Z}(\mathcal{S}_{n}^{\mathrm{st}}(\Sigma)) \subset \mathcal{Z}(\mathcal{A}_{q}(\Delta)),$ $\text{i.e. } \mathcal{Z}(\mathcal{S}_{n}^{\mathrm{st}}(\Sigma)) = \mathcal{S}_{n}^{\mathrm{st}}(\Sigma) \cap \mathcal{Z}(\mathcal{A}_{q}(\Delta))$

<u>**Thm 2.**</u> [KW'24] $q^{1/n}$: a primitive m'-th root of 1 We described $\mathcal{Z}(\mathcal{A}_q(\Delta))$ explicitly. We also described $\mathcal{Z}(\mathcal{S}_n^{\mathrm{st}}(\Sigma))$. **Prop.** [KW'24] Thm. implies PI-deg. of $\mathcal{S}_n^{\mathrm{st}}(\Sigma) = \mathrm{PI}$ -deg. of $\mathcal{A}_q(\Delta)$ <u>**PI-degree**</u> = the highest dim. among finite dim. irrep.'s |minimal generating set of A as $\mathcal{Z}(A)$ -module| = (PI-degree of A)² Strategy.

 $\exists \mathsf{P}^{\Delta}, \ \mathcal{A}_q(\Delta) = \mathbb{T}(\mathsf{P}^{\Delta})$ quantum torus **Step 1.** Decompose P^{Δ} and describe some block matrices explicitly **Step 2.** Describe the conditions of the center as vectors **Step 3.** Take the quotient and compute the cardinality

 $r(\Sigma) := #(\partial$ -punctures) + #(components of $\partial \overline{\Sigma}$) + 2g - 2 t: # components of $\partial \overline{\Sigma}$ with even number of ∂ -punctures

<u>Thm 3.</u> [KW'24]

PI-deg. of $\mathcal{S}_n^{\mathrm{st}}(\Sigma) = \text{PI-deg. of } \mathcal{A}_q(\Delta) = \sqrt{d^{r(\Sigma)-t}m^{(n^2-1)r(\Sigma)-t(n-1)}}$ **Prob**. For m = 2, it recovers [Vu'22], $d = \gcd(m', n), \ m = m'/d$

<u>Rmk.</u> For n = 2, it recovers [Yu'23].

Summary

<u>**Thm 1.**</u> $S_n^{\mathrm{st}}(\Sigma)$ is finitely generated as $\mathcal{Z}(S_n^{\mathrm{st}}(\Sigma))$ -module **Unicity thm.** {finite dim. irrep's of A}/conj. \longrightarrow MaxSpec($\mathcal{Z}(A)$)

 $\mathcal{A}_{q}^{+}(\Delta) \subset \mathcal{S}_{n}^{\mathrm{st}}(\Sigma) \subset \mathcal{A}_{q}(\Delta) \Longrightarrow \mathcal{Z}(\mathcal{S}_{n}^{\mathrm{st}}(\Sigma)) = \mathcal{S}_{n}^{\mathrm{st}}(\Sigma) \cap \mathcal{Z}(\mathcal{A}_{q}(\Sigma,\lambda))$ $\underline{\mathbf{Thm 2.}} \quad q^{1/n}: \text{ a primitive } m'\text{-th root of 1}$ We described $\mathcal{Z}(\mathcal{A}_{q}(\Delta))$ explicitly. We also described $\mathcal{Z}(\mathcal{S}_{n}^{\mathrm{st}}(\Sigma)).$

Thm 3. PI-deg. of
$$\mathcal{S}_n^{\mathrm{st}}(\Sigma) = \sqrt{d^{r(\Sigma)-t}m^{(n^2-1)r(\Sigma)-t(n-1)}}$$

 $d = \gcd(m', n), \ m = m'/d$

Application & similar results

We can access to representation theory of quantum moduli alg.

 $\Sigma = \left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) \xrightarrow{\text{st}} \mathcal{S}_n^{\text{st}}(\Sigma) \cong \text{the quantum moduli alg.}$

 $\overline{\mathcal{S}}_n^{\mathrm{st}}(\Sigma) = \mathcal{S}_n^{\mathrm{st}}(\Sigma)/(\text{kernel of (original) quantum trace map})$ reduced stated $\mathrm{SL}(n)$ -skein alg.

injective quantum trace map $\overline{\operatorname{tr}}_{q}^{\Delta} \colon \overline{\mathcal{S}}_{n}^{\operatorname{st}}(\Sigma) \hookrightarrow \overline{\mathcal{A}}_{q}(\Delta) \xrightarrow{\cong} \overline{\mathcal{X}}_{q}^{\operatorname{bl}}(\Delta) \subset \overline{\mathcal{X}}_{q}(\Delta)$ original Fock–Goncharov alg. in (quantum) higher Teichmüller sp.

<u>**Thm 4.</u>** Similar results for reduced stated SL(n)-skein alg.'s almost Azumaya, $\mathcal{Z}(\overline{\mathcal{A}}_q(\Delta)), \ \mathcal{Z}(\overline{\mathcal{S}}_n^{\mathrm{st}}(\Sigma)),$ PI-deg.</u>

What's next?

 $\overline{\mathcal{S}}_n^{\mathrm{st}}(\Sigma)$: reduced stated $\mathrm{SL}(n)$ -skein algebra of Σ .

Each conn. comp. of Σ has $\partial \Sigma \neq \emptyset$ and NO interior punctures today's setting

- <u>n=2</u> $\overline{\mathcal{S}}_{2}^{\mathrm{st}}(\Sigma) = \mathrm{quantum \ cluster \ alg.}$ [Muller'16]
- <u>n=3</u> $\overline{\mathcal{S}}_{3}^{\mathrm{st}}(\Sigma) \subset$ quantum cluster alg. [Ishibashi-Yuasa'22] **Conj.** $\overline{\mathcal{S}}_{3}^{\mathrm{st}}(\Sigma) =$ quantum cluster alg.

 $\overline{\mathcal{S}}_n^{\mathrm{st}}(\Sigma) =$ quantum cluster alg. for any n ?

if it is true \Rightarrow representation theory of quantum higher cluster alg.

<u>Prob.</u> • Describe the Azumaya locus explicitly.

• Give a geometric meaning of Auzmaya representations.