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Introduction Curve QPs Proof of Theorem Questions

Today’s focus

Goal: Show that every cluster seed in C[M(Λβ)] comes from a filling.

Legendrian Λ −−−−−−−−−−−−→ Moduli space M(Λ)

Lagrangian filling L of Λ −−−−→ Chart TL
∼= H1(L,C∗) ⊂M(Λ)

L-compressing system D for L−−→ Quiver Q(D) for TL

Disk Di ∈ D −−−−−−−−−−−−−→ Function Ai : TL −→ C∗
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Introduction Curve QPs Proof of Theorem Questions

Making the statement precise

The question: How much does cluster capture of symplectic?

1. Lag(Λβ) := {embedded exact Lagrangian fillings of Λβ}/ ∼Ham..

Toric(X (Λβ ,T )) := {unparametrized algebraic toric charts in M(Λ)}.

∃ a map C◦ : Lag(Λβ) −→ Toric(X (Λβ ,T )), C◦(L) := TL.

2. Lagc(Λβ) := {(L, Γ) : L ∈ Lag(Λβ), cluster L-compressing system Γ}
Seed(X (Λβ)) := {cluster seeds in C[X (Λβ)]}.

∃ a map C◦ : Lagc(Λβ) −→ Seed(X (Λβ ,T )), C(L, Γ) := (TL,A(Γ)).

3. Central question: surjectivity and injectivity of C◦ and C?
(If C surjects, then C◦ surjects onto Seed(X (Λβ ,T )), subset of Toric(X (Λβ ,T )).)
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Introduction Curve QPs Proof of Theorem Questions

What we knew

It is (unfortunately) easy to review all that is known on this:

1. Injectivity is known only when Λβ is the unknot. In that case, M(Λ) is a
point and there is a unique filling L ∼= D2. (← non-trivial result)

2. Surjectivity is known only for ADE cases: finite and affines types.
(B.H. An-Y. Bae-E. Lee, J. Hughes & Y. Pan)

3. In previous work: symplectically realized elements of the cluster modular
group and showed that it surjects onto some infinite families in
Seed(X (Λβ ,T )). (← braid group actions in Gr(k, kn), Donaldson-Thomas)

4. I suspect new ideas are needed to tackle both injectivity and surjectivity:
current methods seem to all fall significantly short.

Today: Focus on surjectivity.

Also, we restrict to Λβ with β = w0γw0.
(We write Λβ to mean Λw0βw0

onward.)
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Main result I: Surjectivity

Theorem (2023)

Let Λβ ⊂ (R3, ξst) be the Legendrian link associated to a positive braid
word β and X (Λβ) its augmentation variety, with one marked point per
component. Then the set-theoretic map

C : Lagc(Λβ) −→ Seed(X (Λβ))

is surjective, i.e. each cluster seed is induced by an embedded exact
Lagrangian filling endowed with an L-compressing system.

Even better: show that any sequence of cluster mutations can be
realized by a sequence of Lagrangian disk surgeries.

Non-trivial problem: in algebra mutation automatically removes 2-cycles
(by fiat), in geometry this is not at all immediate, e.g. algebraic
intersection 0 but geometric intersection 2.
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Main result II: The technical statement

Theorem (2023)

Let Λβ ⊂ (R3, ξst) be the Legendrian link associated to a positive braid word β.
Then there exists an embedded exact Lagrangian filling L ⊂ (R4, λst) of Λβ and
an L-compressing system Γ for L such that the following holds:

(i) If µv` . . . µv1 is any sequence of mutations, where v1, . . . , v` are mutable vertices
of the quiver Q(c(L, Γ)) associated to the cluster seed c(L, Γ) of L in C[X (Λβ)],
then there exists a sequence of embedded exact Lagrangian fillings Lk of Λβ ,
each equipped with an L-compressing system Γk , with associated cluster seeds

c(Lk , Γk) = µvk . . . µv1 (c(L, Γ))

in C[X (Λβ)], for all k ∈ [`].

(ii) Each L-compressing system Γk for Lk is such that Lagrangian disk surgery on
Lk along any Lagrangian disk in D(Γk) yields an L-compressing system. In
addition, Γk+1 is equivalent to this L-compressing system via a sequence of
triple point moves and local bigon moves. �

Non-trivial problem (alternative): need to show that an L-compressing
system persists under Lagrangian disk surgeries.
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What may go wrong?

Let D be an L-compressing system for L and Γ = {γ1, . . . , γb} the set of
curves in L given by the boundaries of the disks, b = b1(L).

(i) A Lagrangian disk surgery along Di ∈ D changes curves in Γ via:

γi → −γi if i = j ,
γj → γj if γj · γi < 0,
γj → τi (γj) if γj · γi > 0.

This is called a γ-exchange of Γ along γ.

(ii) This process creates a new configuration of curves µi (Γ). The
intersection quiver Q(µi (Γ)) of µi (Γ) is the mutation at γi of the
intersection quiver Q(Γ) except that it might have 2-cycles.

(iii) If one applies Lagrangian disk surgery along a disk whose boundary is a
vertex part of a 2-cycle, then it results in an immersed curve.

Problem: Lagrangian surgery works for embedded, not immersed!

The issue was the bigon: need to understand when they can be removed!
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(iii) If one applies Lagrangian disk surgery along a disk whose boundary is a
vertex part of a 2-cycle, then it results in an immersed curve.

Problem: Lagrangian surgery works for embedded, not immersed!

The issue was the bigon: need to understand when they can be removed!
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Curve Quiver with Potential

Idea: Construct a QP that keeps tracks of polygons

Let Σ be an oriented surface and C = {γ1, . . . , γb}, b ∈ N, a collection of
embedded oriented closed connected curves γi ⊂ Σ.
(→ this will all be a smooth construction, no symplectic topology!)

Suppose that their homology classes in H1(L,Z) are linearly independent.
(or weaker “bigon sides” condition)

By definition, the quiver Q(C) has vertices the γi and arrows their
geometric intersections.

We want to build a potential W (C) ∈ HH0(Q(C)) for Q(C) that keeps
track of the polygons in Σ bounded by curves in C.
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The Potential W (C)

1. The potential W (C) ∈ HH0(Q(C)) of Q(C) is defined by

W (C) =
∑

v1...v`∈Γ+
`

σ(v1 . . . v`)·v` . . . v1 −
∑

w1...w`∈Γ−
`

σ(w1 . . .w`)·w1 . . .w`,

where Γ±` = {`-gons bounded by C which are ±-oriented}. (Here σ is sign for Z.)

2. By definition, (Q(C),W (C)) is the curve quiver with potential of C.

3. There is a notion of QP-mutation due to Derksen-Weyman-Zelevinsky
(DWZ). Also, we consider QPs up to right-equivalence.
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What properties do we need for such curve QPs?

In order to get rid of bigons, we use the following:

Theorem (Hass-Scott Algorithm)

Let C0 be a configuration with a collection of bigons {B1, . . . ,Bm}.
Then, for any i ∈ [m], there exists a sequence of triple point moves and
one local bigon move on C0 that yields a new configuration C1 such that
the collection of bigons of C1 is {B1, . . . ,Bm} \ {Bi}. �

We must understand behavior of curve QPs under triple point
moves and bigon moves. (→ change in quiver and potential)

We know that Q(C) changes according to quiver mutation under
Lagrangian surgery. We must still show that W (C) changes according to
the DWZ’s QP-mutation. (→ see how polygons change)
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Invariance of Curve QPs under planar moves I

Proposition

Let (Q(C),W (C)) be a curve QP associated to C. Then (Q(C),W (C)) is
invariant under triple point moves, up to right-equivalence.
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Proof of invariance (triple move): Case I

(i)  0 p21 + p23p31 p31

p21 0 p23

p31 p23 0



(ii)  0 q21 q31

q21 − q23q31 0 q23

q31 q23 0
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Proof of invariance (triple move): Case I (continued)

Right-equivalence: p21 7→ p21 − p23p31 and identity for the rest. Then
matrices will match, indeed 0 p21 + p23p31 p31

p21 0 p23

p31 p23 0


now becomes 0 (p21 − p23p31) + p23p31 p31

(p21 − p23p31) 0 p23

p31 p23 0

 =

 0 p21 p31

p21 − p23p31 0 p23

p31 p23 0

 ,

which is the second matrix we had relabeled, thus concludes first case.
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Proof of invariance (triple move): Case II

(i) 0 p21 p13

p21 0 p32

p13 p32 0

 , plus monomial p13p32p21

(ii) 0 q21 q13

q21 0 q32

q13 q32 0

 , plus monomial q13q32q21.
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Bigon moves

Eliminating bigons: Extracting the reduced part

By [DWZ], every (Q,W ) breaks into a trivial and reduced parts:
(Qtriv ,Wtriv )⊕ (Qred ,Wred). (Intuitively, trivial contains 2-cycles seen by W .)

Proposition

Let (Q(C),W (C)) be a curve QP associated to C and Cred the result of
applying the Hass-Scott algorithm removing all bigons. Then

(Q(Cred),W (Cred)) = (Q(C)red ,W (C)red)

is the reduced part of (Q(C),W (C)).

Therefore, in the context of curve QP, we know that extracting the
reduced part of curve QP is achieved by removing bigons.
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Curve QPs under Lagrangian disk surgery

Disk surgery: Inducing QP-mutations

By [DWZ], QP-mutation consists of a quiver mutation without
eliminating 2-cycles, a change in W , and then taking the reduced part.

Proposition

Let (Q(C),W (C)) be a curve QP associated to C and γ ∈ C. Then the
curve QP associated to the γ-exchange of C is the QP-mutation of
(Q(C),W (C)) at γ:

(Q(µγ(C)),W (µγ(C))) = (µγ(Q(C)), µγ(W (C))).

Therefore, in the context of curve QP, performing a γ-exchange
(e.g. from Lagrangian disk surgery) is a QP-mutation.
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Example of QP-mutation from γ-exchange

Let us work out the change in the quiver in a simple scenario:
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Example of QP-mutation from γ-exchange (continued)

The change in polygons in this scenario:
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Steps for surjectivity

1. Construct a filling L and an L-compressing system D such that the
associated curve QP (Q(D),W (D)) is non-degenerate.

Non-degeneracy guarantees that no 2-cycles ever appear when mutating
(Q(D),W (D)), so you can mutate forever. How is this achieved?

2. The construction uses conjugate surfaces associated to plabic fences:
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Steps for surjectivity II

3. Use that conjugate surface can be made an embedded exact Lagrangian
filling and plabic faces give L-compressing disks. (← weaves work too)

4. Prove that the resulting curve QP is rigid, which implies non-degenerate.
(Rigid is intuitively that there are no non-trivial infinitesimal deformations: trace space

of Jacobian algebra is just the ground ring.)

This is achieved via induction, using an interesting combinatorial property
of these quivers: the rightmost vertex can always be turned into a
source/sink via mutations. (← triangular extensions)
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A few questions

1. Injectivity of C? I conjecture yes (open even for the trefoil A2-case).

2. Surjectivity of C is proven now: can we prove that every seed comes from
a weave? (← Also conjecture yes: see harmonic maps to affine buildings)

3. Relating this curve QP to the CY3 context and understanding how
algebra of this QP relates to 4D symplectic topology.

4. Given a Lagrangian filling L, how many L-compressing system are there
for it? Also, how many cluster structures exist on M(Λβ)?

5. Generalize this program for a general Λ. This includes building the right
L-compressing systems and understanding what it means for a
dg-category (or at least a D−-stack) to be a cluster algebra.
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We reached the end.

Thanks a lot for attending these lectures!
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