## Cluster algebras and symplectic topology III

Summer School on Cluster Algebras 2023


Roger Casals (UC Davis) August 23rd 2023

## Today's focus

Goal: Show that every cluster seed in $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ comes from a filling.

## Today's focus

Goal: Show that every cluster seed in $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ comes from a filling.

Legendrian $\wedge \longrightarrow$ Moduli space $\mathfrak{M}(\Lambda)$
Lagrangian filling $L$ of $\wedge \longrightarrow$ Chart $T_{L} \cong H^{1}\left(L, \mathbb{C}^{*}\right) \subset \mathfrak{M}(\Lambda)$
$\mathbb{L}$-compressing system $\mathfrak{D}$ for $\mathrm{L} \longrightarrow \quad$ Quiver $Q(\mathfrak{D})$ for $T_{L}$
Disk $D_{i} \in \mathfrak{D}$


Function $A_{i}: T_{L} \longrightarrow \mathbb{C}^{*}$


Making the statement precise

The question: How much does cluster capture of symplectic?

The question: How much does cluster capture of symplectic?

1. $\operatorname{Lag}\left(\Lambda_{\beta}\right):=\left\{\right.$ embedded exact Lagrangian fillings of $\left.\Lambda_{\beta}\right\} / \sim_{\text {Ham. }}$.

## Making the statement precise

The question: How much does cluster capture of symplectic?

1. $\operatorname{Lag}\left(\Lambda_{\beta}\right):=\left\{\right.$ embedded exact Lagrangian fillings of $\left.\Lambda_{\beta}\right\} / \sim_{\text {Ham. }}$. Toric $\left(X\left(\Lambda_{\beta}, T\right)\right):=\{$ unparametrized algebraic toric charts in $\mathfrak{M}(\Lambda)\}$.

## Making the statement precise

The question: How much does cluster capture of symplectic?

1. $\operatorname{Lag}\left(\Lambda_{\beta}\right):=\left\{\right.$ embedded exact Lagrangian fillings of $\left.\Lambda_{\beta}\right\} / \sim_{\text {Ham. }}$. Toric $\left(X\left(\Lambda_{\beta}, T\right)\right):=\{$ unparametrized algebraic toric charts in $\mathfrak{M}(\Lambda)\}$. $\exists$ a map $\mathfrak{C}^{\circ}: \operatorname{Lag}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Toric}\left(X\left(\Lambda_{\beta}, T\right)\right), \quad \mathfrak{C}^{\circ}(L):=T_{L}$.

## Making the statement precise

The question: How much does cluster capture of symplectic?

1. $\operatorname{Lag}\left(\Lambda_{\beta}\right):=\left\{\right.$ embedded exact Lagrangian fillings of $\left.\Lambda_{\beta}\right\} / \sim_{\text {Ham. }}$. Toric $\left(X\left(\Lambda_{\beta}, T\right)\right):=\{$ unparametrized algebraic toric charts in $\mathfrak{M}(\Lambda)\}$. $\exists$ a map $\mathfrak{C}^{\circ}: \operatorname{Lag}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Toric}\left(X\left(\Lambda_{\beta}, T\right)\right), \quad \mathfrak{C}^{\circ}(L):=T_{L}$.
2. $\operatorname{Lag}^{c}\left(\Lambda_{\beta}\right):=\left\{(L, \Gamma): L \in \operatorname{Lag}\left(\Lambda_{\beta}\right)\right.$, cluster $\mathbb{L}$-compressing system $\left.\Gamma\right\}$

## Making the statement precise

The question: How much does cluster capture of symplectic?

1. $\operatorname{Lag}\left(\Lambda_{\beta}\right):=\left\{\right.$ embedded exact Lagrangian fillings of $\left.\Lambda_{\beta}\right\} / \sim_{\text {Ham. }}$. Toric $\left(X\left(\Lambda_{\beta}, T\right)\right):=\{$ unparametrized algebraic toric charts in $\mathfrak{M}(\Lambda)\}$. $\exists$ a map $\mathfrak{C}^{\circ}: \operatorname{Lag}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Toric}\left(X\left(\Lambda_{\beta}, T\right)\right), \quad \mathfrak{C}^{\circ}(L):=T_{L}$.
2. $\operatorname{Lag}^{c}\left(\Lambda_{\beta}\right):=\left\{(L, \Gamma): L \in \operatorname{Lag}\left(\Lambda_{\beta}\right)\right.$, cluster $\mathbb{L}$-compressing system $\left.\Gamma\right\}$ $\operatorname{Seed}\left(X\left(\Lambda_{\beta}\right)\right):=\left\{\right.$ cluster seeds in $\left.\mathbb{C}\left[X\left(\Lambda_{\beta}\right)\right]\right\}$.

## Making the statement precise

The question: How much does cluster capture of symplectic?

1. $\operatorname{Lag}\left(\Lambda_{\beta}\right):=\left\{\right.$ embedded exact Lagrangian fillings of $\left.\Lambda_{\beta}\right\} / \sim_{\text {Ham. }}$. Toric $\left(X\left(\Lambda_{\beta}, T\right)\right):=\{$ unparametrized algebraic toric charts in $\mathfrak{M}(\Lambda)\}$. $\exists$ a map $\mathfrak{C}^{\circ}: \operatorname{Lag}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Toric}\left(X\left(\Lambda_{\beta}, T\right)\right), \quad \mathfrak{C}^{\circ}(L):=T_{L}$.
2. $\operatorname{Lag}^{c}\left(\Lambda_{\beta}\right):=\left\{(L, \Gamma): L \in \operatorname{Lag}\left(\Lambda_{\beta}\right)\right.$, cluster $\mathbb{L}$-compressing system $\left.\Gamma\right\}$ Seed $\left(X\left(\Lambda_{\beta}\right)\right):=\left\{\right.$ cluster seeds in $\left.\mathbb{C}\left[X\left(\Lambda_{\beta}\right)\right]\right\}$.
$\exists$ a map $\mathfrak{C}^{\circ}: \operatorname{Lag}^{c}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Seed}\left(X\left(\Lambda_{\beta}, T\right)\right), \quad \mathfrak{C}(L, \Gamma):=\left(T_{L}, A(\Gamma)\right)$.

## Making the statement precise

The question: How much does cluster capture of symplectic?

1. $\operatorname{Lag}\left(\Lambda_{\beta}\right):=\left\{\right.$ embedded exact Lagrangian fillings of $\left.\Lambda_{\beta}\right\} / \sim_{\text {Ham. }}$. Toric $\left(X\left(\Lambda_{\beta}, T\right)\right):=\{$ unparametrized algebraic toric charts in $\mathfrak{M}(\Lambda)\}$. $\exists$ a map $\mathfrak{C}^{\circ}: \operatorname{Lag}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Toric}\left(X\left(\Lambda_{\beta}, T\right)\right), \quad \mathfrak{C}^{\circ}(L):=T_{L}$.
2. $\operatorname{Lag}^{c}\left(\Lambda_{\beta}\right):=\left\{(L, \Gamma): L \in \operatorname{Lag}\left(\Lambda_{\beta}\right)\right.$, cluster $\mathbb{L}$-compressing system $\left.\Gamma\right\}$ $\operatorname{Seed}\left(X\left(\Lambda_{\beta}\right)\right):=\left\{\right.$ cluster seeds in $\left.\mathbb{C}\left[X\left(\Lambda_{\beta}\right)\right]\right\}$.
$\exists$ a map $\mathfrak{C}^{\circ}: \operatorname{Lag}^{c}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Seed}\left(X\left(\Lambda_{\beta}, T\right)\right), \quad \mathfrak{C}(L, \Gamma):=\left(T_{L}, A(\Gamma)\right)$.
3. Central question: surjectivity and injectivity of $\mathfrak{C}^{\circ}$ and $\mathfrak{C}$ ? (If $\mathfrak{C}$ surjects, then $\mathfrak{C}^{\circ}$ surjects onto $\operatorname{Seed}\left(X\left(\Lambda_{\beta}, T\right)\right.$ ), subset of $\operatorname{Toric}\left(X\left(\Lambda_{\beta}, T\right)\right)$.)

## What we knew

It is (unfortunately) easy to review all that is known on this:

## What we knew

It is (unfortunately) easy to review all that is known on this:

1. Injectivity is known only when $\Lambda_{\beta}$ is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^{2}$. ( $\leftarrow$ non-trivial result)

## What we knew

It is (unfortunately) easy to review all that is known on this:

1. Injectivity is known only when $\Lambda_{\beta}$ is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^{2}$. ( $\leftarrow$ non-trivial result)
2. Surjectivity is known only for ADE cases: finite and affines types. (B.H. An-Y. Bae-E. Lee, J. Hughes \& Y. Pan)

## What we knew

It is (unfortunately) easy to review all that is known on this:

1. Injectivity is known only when $\Lambda_{\beta}$ is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^{2}$. ( $\leftarrow$ non-trivial result)
2. Surjectivity is known only for ADE cases: finite and affines types. (B.H. An-Y. Bae-E. Lee, J. Hughes \& Y. Pan)
3. In previous work: symplectically realized elements of the cluster modular group and showed that it surjects onto some infinite families in $\operatorname{Seed}\left(X\left(\Lambda_{\beta}, T\right)\right)$. ( $\leftarrow$ braid group actions in $\operatorname{Gr}(k, k n)$, Donaldson-Thomas)

## What we knew

It is (unfortunately) easy to review all that is known on this:

1. Injectivity is known only when $\Lambda_{\beta}$ is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^{2}$. ( $\leftarrow$ non-trivial result)
2. Surjectivity is known only for ADE cases: finite and affines types. (B.H. An-Y. Bae-E. Lee, J. Hughes \& Y. Pan)
3. In previous work: symplectically realized elements of the cluster modular group and showed that it surjects onto some infinite families in $\operatorname{Seed}\left(X\left(\Lambda_{\beta}, T\right)\right)$. ( $\leftarrow$ braid group actions in $\operatorname{Gr}(k, k n)$, Donaldson-Thomas)
4. I suspect new ideas are needed to tackle both injectivity and surjectivity: current methods seem to all fall significantly short.

## What we knew

It is (unfortunately) easy to review all that is known on this:

1. Injectivity is known only when $\Lambda_{\beta}$ is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^{2}$. ( $\leftarrow$ non-trivial result)
2. Surjectivity is known only for ADE cases: finite and affines types. (B.H. An-Y. Bae-E. Lee, J. Hughes \& Y. Pan)
3. In previous work: symplectically realized elements of the cluster modular group and showed that it surjects onto some infinite families in $\operatorname{Seed}\left(X\left(\Lambda_{\beta}, T\right)\right)$. ( $\leftarrow$ braid group actions in $\operatorname{Gr}(k, k n)$, Donaldson-Thomas)
4. I suspect new ideas are needed to tackle both injectivity and surjectivity: current methods seem to all fall significantly short.

Today: Focus on surjectivity.
Also, we restrict to $\Lambda_{\beta}$ with $\beta=w_{0} \gamma w_{0}$. (We write $\Lambda_{\beta}$ to mean $\Lambda_{w_{0} \beta w_{0}}$ onward.)

## Main result I: Surjectivity

## Theorem (2023)

Let $\Lambda_{\beta} \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$ be the Legendrian link associated to a positive braid word $\beta$ and $X\left(\Lambda_{\beta}\right)$ its augmentation variety, with one marked point per component. Then the set-theoretic map

$$
\mathfrak{C}: \operatorname{Lag}^{c}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Seed}\left(X\left(\Lambda_{\beta}\right)\right)
$$

is surjective, i.e. each cluster seed is induced by an embedded exact Lagrangian filling endowed with an $\mathbb{L}$-compressing system.

## Main result I: Surjectivity

## Theorem (2023)

Let $\Lambda_{\beta} \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$ be the Legendrian link associated to a positive braid word $\beta$ and $X\left(\Lambda_{\beta}\right)$ its augmentation variety, with one marked point per component. Then the set-theoretic map

$$
\mathfrak{C}: \operatorname{Lag}^{c}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Seed}\left(X\left(\Lambda_{\beta}\right)\right)
$$

is surjective, i.e. each cluster seed is induced by an embedded exact Lagrangian filling endowed with an $\mathbb{L}$-compressing system.

- Even better: show that any sequence of cluster mutations can be realized by a sequence of Lagrangian disk surgeries.


## Main result I: Surjectivity

## Theorem (2023)

Let $\Lambda_{\beta} \subset\left(\mathbb{R}^{3}, \xi_{s t}\right)$ be the Legendrian link associated to a positive braid word $\beta$ and $X\left(\Lambda_{\beta}\right)$ its augmentation variety, with one marked point per component. Then the set-theoretic map

$$
\mathfrak{C}: \operatorname{Lag}^{c}\left(\Lambda_{\beta}\right) \longrightarrow \operatorname{Seed}\left(X\left(\Lambda_{\beta}\right)\right)
$$

is surjective, i.e. each cluster seed is induced by an embedded exact Lagrangian filling endowed with an $\mathbb{L}$-compressing system.

- Even better: show that any sequence of cluster mutations can be realized by a sequence of Lagrangian disk surgeries.
- Non-trivial problem: in algebra mutation automatically removes 2-cycles (by fiat), in geometry this is not at all immediate, e.g. algebraic intersection 0 but geometric intersection 2.


## Main result II: The technical statement

Theorem (2023)
Let $\Lambda_{\beta} \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$ be the Legendrian link associated to a positive braid word $\beta$. Then there exists an embedded exact Lagrangian filling $L \subset\left(\mathbb{R}^{4}, \lambda_{s t}\right)$ of $\Lambda_{\beta}$ and an $\mathbb{L}$-compressing system $\Gamma$ for $L$ such that the following holds:

## Main result II: The technical statement

## Theorem (2023)

Let $\Lambda_{\beta} \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$ be the Legendrian link associated to a positive braid word $\beta$. Then there exists an embedded exact Lagrangian filling $L \subset\left(\mathbb{R}^{4}, \lambda_{s t}\right)$ of $\Lambda_{\beta}$ and an $\mathbb{L}$-compressing system $\Gamma$ for $L$ such that the following holds:
(i) If $\mu_{v_{\ell}} \ldots \mu_{v_{1}}$ is any sequence of mutations, where $v_{1}, \ldots, v_{\ell}$ are mutable vertices of the quiver $Q(\mathfrak{c}(L, \Gamma))$ associated to the cluster seed $\mathfrak{c}(L, \Gamma)$ of $L$ in $\mathbb{C}\left[X\left(\Lambda_{\beta}\right)\right]$, then there exists a sequence of embedded exact Lagrangian fillings $L_{k}$ of $\Lambda_{\beta}$, each equipped with an $\mathbb{L}$-compressing system $\Gamma_{k}$, with associated cluster seeds

$$
\mathfrak{c}\left(L_{k}, \Gamma_{k}\right)=\mu_{v_{k}} \ldots \mu_{v_{1}}(\mathfrak{c}(L, \Gamma))
$$

in $\mathbb{C}\left[X\left(\Lambda_{\beta}\right)\right]$, for all $k \in[\ell]$.

## Main result II: The technical statement

## Theorem (2023)

Let $\Lambda_{\beta} \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$ be the Legendrian link associated to a positive braid word $\beta$. Then there exists an embedded exact Lagrangian filling $L \subset\left(\mathbb{R}^{4}, \lambda_{s t}\right)$ of $\Lambda_{\beta}$ and an $\mathbb{L}$-compressing system $\Gamma$ for $L$ such that the following holds:
(i) If $\mu_{v_{\ell}} \ldots \mu_{v_{1}}$ is any sequence of mutations, where $v_{1}, \ldots, v_{\ell}$ are mutable vertices of the quiver $Q(\mathfrak{c}(L, \Gamma))$ associated to the cluster seed $\mathfrak{c}(L, \Gamma)$ of $L$ in $\mathbb{C}\left[X\left(\Lambda_{\beta}\right)\right]$, then there exists a sequence of embedded exact Lagrangian fillings $L_{k}$ of $\Lambda_{\beta}$, each equipped with an $\mathbb{L}$-compressing system $\Gamma_{k}$, with associated cluster seeds

$$
\mathfrak{c}\left(L_{k}, \Gamma_{k}\right)=\mu_{v_{k}} \ldots \mu_{v_{1}}(\mathfrak{c}(L, \Gamma))
$$

in $\mathbb{C}\left[X\left(\Lambda_{\beta}\right)\right]$, for all $k \in[\ell]$.
(ii) Each $\mathbb{L}$-compressing system $\Gamma_{k}$ for $L_{k}$ is such that Lagrangian disk surgery on $L_{k}$ along any Lagrangian disk in $\mathfrak{D}\left(\Gamma_{k}\right)$ yields an $\mathbb{L}$-compressing system. In addition, $\Gamma_{k+1}$ is equivalent to this $\mathbb{L}$-compressing system via a sequence of triple point moves and local bigon moves.

## Main result II: The technical statement

## Theorem (2023)

Let $\Lambda_{\beta} \subset\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$ be the Legendrian link associated to a positive braid word $\beta$. Then there exists an embedded exact Lagrangian filling $L \subset\left(\mathbb{R}^{4}, \lambda_{s t}\right)$ of $\Lambda_{\beta}$ and an $\mathbb{L}$-compressing system $\Gamma$ for $L$ such that the following holds:
(i) If $\mu_{v_{\ell}} \ldots \mu_{v_{1}}$ is any sequence of mutations, where $v_{1}, \ldots, v_{\ell}$ are mutable vertices of the quiver $Q(\mathfrak{c}(L, \Gamma))$ associated to the cluster seed $\mathfrak{c}(L, \Gamma)$ of $L$ in $\mathbb{C}\left[X\left(\Lambda_{\beta}\right)\right]$, then there exists a sequence of embedded exact Lagrangian fillings $L_{k}$ of $\Lambda_{\beta}$, each equipped with an $\mathbb{L}$-compressing system $\Gamma_{k}$, with associated cluster seeds

$$
\mathfrak{c}\left(L_{k}, \Gamma_{k}\right)=\mu_{v_{k}} \ldots \mu_{v_{1}}(\mathfrak{c}(L, \Gamma))
$$

in $\mathbb{C}\left[X\left(\Lambda_{\beta}\right)\right]$, for all $k \in[\ell]$.
(ii) Each $\mathbb{L}$-compressing system $\Gamma_{k}$ for $L_{k}$ is such that Lagrangian disk surgery on $L_{k}$ along any Lagrangian disk in $\mathfrak{D}\left(\Gamma_{k}\right)$ yields an $\mathbb{L}$-compressing system. In addition, $\Gamma_{k+1}$ is equivalent to this $\mathbb{L}$-compressing system via a sequence of triple point moves and local bigon moves.

Non-trivial problem (alternative): need to show that an $\mathbb{L}$-compressing system persists under Lagrangian disk surgeries.

## What may go wrong?

Let $\mathfrak{D}$ be an $\mathbb{L}$-compressing system for $L$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}$ the set of curves in $L$ given by the boundaries of the disks, $b=b_{1}(L)$.

## What may go wrong?

Let $\mathfrak{D}$ be an $\mathbb{L}$-compressing system for $L$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}$ the set of curves in $L$ given by the boundaries of the disks, $b=b_{1}(L)$.
(i) A Lagrangian disk surgery along $D_{i} \in \mathfrak{D}$ changes curves in $\Gamma$ via:

This is called a $\gamma$-exchange of $\Gamma$ along $\gamma$.

## What may go wrong?

Let $\mathfrak{D}$ be an $\mathbb{L}$-compressing system for $L$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}$ the set of curves in $L$ given by the boundaries of the disks, $b=b_{1}(L)$.
(i) A Lagrangian disk surgery along $D_{i} \in \mathfrak{D}$ changes curves in $\Gamma$ via:

$$
\gamma_{i} \rightarrow-\gamma_{i} \text { if } i=j,
$$

This is called a $\gamma$-exchange of $\Gamma$ along $\gamma$.

## What may go wrong?

Let $\mathfrak{D}$ be an $\mathbb{L}$-compressing system for $L$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}$ the set of curves in $L$ given by the boundaries of the disks, $b=b_{1}(L)$.
(i) A Lagrangian disk surgery along $D_{i} \in \mathfrak{D}$ changes curves in $\Gamma$ via:

$$
\begin{aligned}
& \gamma_{i} \rightarrow-\gamma_{i} \text { if } i=j, \\
& \gamma_{j} \rightarrow \gamma_{j} \text { if } \gamma_{j} \cdot \gamma_{i}<0,
\end{aligned}
$$

This is called a $\gamma$-exchange of $\Gamma$ along $\gamma$.

## What may go wrong?

Let $\mathfrak{D}$ be an $\mathbb{L}$-compressing system for $L$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}$ the set of curves in $L$ given by the boundaries of the disks, $b=b_{1}(L)$.
(i) A Lagrangian disk surgery along $D_{i} \in \mathfrak{D}$ changes curves in $\Gamma$ via:

$$
\begin{aligned}
& \gamma_{i} \rightarrow-\gamma_{i} \text { if } i=j, \\
& \gamma_{j} \rightarrow \gamma_{j} \text { if } \gamma_{j} \cdot \gamma_{i}<0, \\
& \gamma_{j} \rightarrow \tau_{i}\left(\gamma_{j}\right) \text { if } \gamma_{j} \cdot \gamma_{i}>0 .
\end{aligned}
$$

This is called a $\gamma$-exchange of $\Gamma$ along $\gamma$.

## What may go wrong?

Let $\mathfrak{D}$ be an $\mathbb{L}$-compressing system for $L$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}$ the set of curves in $L$ given by the boundaries of the disks, $b=b_{1}(L)$.
(i) A Lagrangian disk surgery along $D_{i} \in \mathfrak{D}$ changes curves in $\Gamma$ via:

$$
\begin{aligned}
& \gamma_{i} \rightarrow-\gamma_{i} \text { if } i=j, \\
& \gamma_{j} \rightarrow \gamma_{j} \text { if } \gamma_{j} \cdot \gamma_{i}<0, \\
& \gamma_{j} \rightarrow \tau_{i}\left(\gamma_{j}\right) \text { if } \gamma_{j} \cdot \gamma_{i}>0 .
\end{aligned}
$$

This is called a $\gamma$-exchange of $\Gamma$ along $\gamma$.
(ii) This process creates a new configuration of curves $\mu_{i}(\Gamma)$. The intersection quiver $Q\left(\mu_{i}(\Gamma)\right)$ of $\mu_{i}(\Gamma)$ is the mutation at $\gamma_{i}$ of the intersection quiver $Q(\Gamma)$ except that it might have 2 -cycles.

## What may go wrong?

Let $\mathfrak{D}$ be an $\mathbb{L}$-compressing system for $L$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}$ the set of curves in $L$ given by the boundaries of the disks, $b=b_{1}(L)$.
(i) A Lagrangian disk surgery along $D_{i} \in \mathfrak{D}$ changes curves in $\Gamma$ via:

$$
\begin{aligned}
& \gamma_{i} \rightarrow-\gamma_{i} \text { if } i=j, \\
& \gamma_{j} \rightarrow \gamma_{j} \text { if } \gamma_{j} \cdot \gamma_{i}<0, \\
& \gamma_{j} \rightarrow \tau_{i}\left(\gamma_{j}\right) \text { if } \gamma_{j} \cdot \gamma_{i}>0 .
\end{aligned}
$$

This is called a $\gamma$-exchange of $\Gamma$ along $\gamma$.
(ii) This process creates a new configuration of curves $\mu_{i}(\Gamma)$. The intersection quiver $Q\left(\mu_{i}(\Gamma)\right)$ of $\mu_{i}(\Gamma)$ is the mutation at $\gamma_{i}$ of the intersection quiver $Q(\Gamma)$ except that it might have 2 -cycles.
(iii) If one applies Lagrangian disk surgery along a disk whose boundary is a vertex part of a 2-cycle, then it results in an immersed curve.

Problem: Lagrangian surgery works for embedded, not immersed!

## What may go wrong?

Let $\mathfrak{D}$ be an $\mathbb{L}$-compressing system for $L$ and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}$ the set of curves in $L$ given by the boundaries of the disks, $b=b_{1}(L)$.
(i) A Lagrangian disk surgery along $D_{i} \in \mathfrak{D}$ changes curves in $\Gamma$ via:

$$
\begin{aligned}
& \gamma_{i} \rightarrow-\gamma_{i} \text { if } i=j, \\
& \gamma_{j} \rightarrow \gamma_{j} \text { if } \gamma_{j} \cdot \gamma_{i}<0, \\
& \gamma_{j} \rightarrow \tau_{i}\left(\gamma_{j}\right) \text { if } \gamma_{j} \cdot \gamma_{i}>0 .
\end{aligned}
$$

This is called a $\gamma$-exchange of $\Gamma$ along $\gamma$.
(ii) This process creates a new configuration of curves $\mu_{i}(\Gamma)$. The intersection quiver $Q\left(\mu_{i}(\Gamma)\right)$ of $\mu_{i}(\Gamma)$ is the mutation at $\gamma_{i}$ of the intersection quiver $Q(\Gamma)$ except that it might have 2 -cycles.
(iii) If one applies Lagrangian disk surgery along a disk whose boundary is a vertex part of a 2-cycle, then it results in an immersed curve.

Problem: Lagrangian surgery works for embedded, not immersed!
The issue was the bigon: need to understand when they can be removed!

## Curve Quiver with Potential

Idea: Construct a QP that keeps tracks of polygons

## Curve Quiver with Potential

Idea: Construct a QP that keeps tracks of polygons

- Let $\Sigma$ be an oriented surface and $\mathcal{C}=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}, b \in \mathbb{N}$, a collection of embedded oriented closed connected curves $\gamma_{i} \subset \Sigma$.
( $\rightarrow$ this will all be a smooth construction, no symplectic topology!)


## Curve Quiver with Potential

Idea: Construct a QP that keeps tracks of polygons

- Let $\Sigma$ be an oriented surface and $\mathcal{C}=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}, b \in \mathbb{N}$, a collection of embedded oriented closed connected curves $\gamma_{i} \subset \Sigma$.
( $\rightarrow$ this will all be a smooth construction, no symplectic topology!)
- Suppose that their homology classes in $H_{1}(L, \mathbb{Z})$ are linearly independent. (or weaker "bigon sides" condition)


## Curve Quiver with Potential

Idea: Construct a QP that keeps tracks of polygons

- Let $\Sigma$ be an oriented surface and $\mathcal{C}=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}, b \in \mathbb{N}$, a collection of embedded oriented closed connected curves $\gamma_{i} \subset \Sigma$.
( $\rightarrow$ this will all be a smooth construction, no symplectic topology!)
- Suppose that their homology classes in $H_{1}(L, \mathbb{Z})$ are linearly independent. (or weaker "bigon sides" condition)
- By definition, the quiver $Q(\mathcal{C})$ has vertices the $\gamma_{i}$ and arrows their geometric intersections.


## Curve Quiver with Potential

Idea: Construct a QP that keeps tracks of polygons

- Let $\Sigma$ be an oriented surface and $\mathcal{C}=\left\{\gamma_{1}, \ldots, \gamma_{b}\right\}, b \in \mathbb{N}$, a collection of embedded oriented closed connected curves $\gamma_{i} \subset \Sigma$.
( $\rightarrow$ this will all be a smooth construction, no symplectic topology!)
- Suppose that their homology classes in $H_{1}(L, \mathbb{Z})$ are linearly independent. (or weaker "bigon sides" condition)
- By definition, the quiver $Q(\mathcal{C})$ has vertices the $\gamma_{i}$ and arrows their geometric intersections.
- We want to build a potential $W(\mathcal{C}) \in H H_{0}(Q(\mathcal{C}))$ for $Q(\mathcal{C})$ that keeps track of the polygons in $\Sigma$ bounded by curves in $\mathcal{C}$.

The Potential W(C)

## The Potential W(C)

1. The potential $W(\mathcal{C}) \in \mathrm{HH}_{0}(Q(\mathcal{C}))$ of $Q(\mathcal{C})$ is defined by

$$
W(\mathcal{C})=\sum_{v_{1} \ldots v_{\ell} \in \Gamma_{\ell}^{+}} \sigma\left(v_{1} \ldots v_{\ell}\right) \cdot v_{\ell} \ldots v_{1}-\sum_{w_{1} \ldots w_{\ell} \in \Gamma_{\ell}^{-}} \sigma\left(w_{1} \ldots w_{\ell}\right) \cdot w_{1} \ldots w_{\ell},
$$

where $\Gamma_{\ell}^{ \pm}=\{\ell$-gons bounded by $\mathcal{C}$ which are $\pm$-oriented $\}$. (Here $\sigma$ is sign for Z .)


## The Potential W(C)

1. The potential $W(\mathcal{C}) \in \mathrm{HH}_{0}(Q(\mathcal{C}))$ of $Q(\mathcal{C})$ is defined by

$$
W(\mathcal{C})=\sum \sigma\left(v_{1} \ldots v_{\ell}\right) \cdot v_{\ell} \ldots v_{1}-\sum \sigma\left(w_{1} \ldots w_{\ell}\right) \cdot w_{1} \ldots w_{\ell}
$$

where $\Gamma_{\ell}^{ \pm}=\{\ell$-gons bounded by $\mathcal{C}$ which are $\pm$-oriented $\}$. (Here $\sigma$ is sign for Z .)

2. By definition, $(Q(\mathcal{C}), W(\mathcal{C}))$ is the curve quiver with potential of $\mathcal{C}$.

## The Potential $W(C)$

1. The potential $W(\mathcal{C}) \in \mathrm{HH}_{0}(Q(\mathcal{C}))$ of $Q(\mathcal{C})$ is defined by

$$
W(\mathcal{C})=\sum \sigma\left(v_{1} \ldots v_{\ell}\right) \cdot v_{\ell} \ldots v_{1}-\sum \sigma\left(w_{1} \ldots w_{\ell}\right) \cdot w_{1} \ldots w_{\ell},
$$

where $\Gamma_{\ell}^{ \pm}=\{\ell$-gons bounded by $\mathcal{C}$ which are $\pm$-oriented $\}$. (Here $\sigma$ is sign for $\mathbb{Z}$.)

2. By definition, $(Q(\mathcal{C}), W(\mathcal{C}))$ is the curve quiver with potential of $\mathcal{C}$.
3. There is a notion of QP-mutation due to Derksen-Weyman-Zelevinsky (DWZ). Also, we consider QPs up to right-equivalence.

## What properties do we need for such curve QPs?

In order to get rid of bigons, we use the following:

## Theorem (Hass-Scott Algorithm)

Let $\mathcal{C}_{0}$ be a configuration with a collection of bigons $\left\{B_{1}, \ldots, B_{m}\right\}$. Then, for any $i \in[m]$, there exists a sequence of triple point moves and one local bigon move on $\mathcal{C}_{0}$ that yields a new configuration $\mathcal{C}_{1}$ such that the collection of bigons of $\mathcal{C}_{1}$ is $\left\{B_{1}, \ldots, B_{m}\right\} \backslash\left\{B_{i}\right\}$.

## What properties do we need for such curve QPs?

In order to get rid of bigons, we use the following:

## Theorem (Hass-Scott Algorithm)

Let $\mathcal{C}_{0}$ be a configuration with a collection of bigons $\left\{B_{1}, \ldots, B_{m}\right\}$. Then, for any $i \in[m]$, there exists a sequence of triple point moves and one local bigon move on $\mathcal{C}_{0}$ that yields a new configuration $\mathcal{C}_{1}$ such that the collection of bigons of $\mathcal{C}_{1}$ is $\left\{B_{1}, \ldots, B_{m}\right\} \backslash\left\{B_{i}\right\}$.

- We must understand behavior of curve QPs under triple point moves and bigon moves. ( $\rightarrow$ change in quiver and potential)


## What properties do we need for such curve QPs?

In order to get rid of bigons, we use the following:

## Theorem (Hass-Scott Algorithm)

Let $\mathcal{C}_{0}$ be a configuration with a collection of bigons $\left\{B_{1}, \ldots, B_{m}\right\}$. Then, for any $i \in[m]$, there exists a sequence of triple point moves and one local bigon move on $\mathcal{C}_{0}$ that yields a new configuration $\mathcal{C}_{1}$ such that the collection of bigons of $\mathcal{C}_{1}$ is $\left\{B_{1}, \ldots, B_{m}\right\} \backslash\left\{B_{i}\right\}$.

- We must understand behavior of curve QPs under triple point moves and bigon moves. ( $\rightarrow$ change in quiver and potential)
- We know that $Q(\mathcal{C})$ changes according to quiver mutation under Lagrangian surgery. We must still show that $W(\mathcal{C})$ changes according to the DWZ's QP-mutation. ( $\rightarrow$ see how polygons change)


## Invariance of Curve QPs under planar moves I

## Proposition

Let $(Q(\mathcal{C}), W(\mathcal{C}))$ be a curve $Q P$ associated to $\mathcal{C}$. Then $(Q(\mathcal{C}), W(\mathcal{C}))$ is invariant under triple point moves, up to right-equivalence.


## Proof of invariance (triple move): Case I

(i)


$$
\left(\begin{array}{ccc}
0 & p_{21}+p_{23} p_{31} & p_{31} \\
p_{21} & 0 & p_{23} \\
p_{31} & p_{23} & 0
\end{array}\right)
$$

## Proof of invariance (triple move): Case I

(i)

$\left(\begin{array}{ccc}0 & p_{21}+p_{23} p_{31} & p_{31} \\ p_{21} & 0 & p_{23} \\ p_{31} & p_{23} & 0\end{array}\right)$
(ii)


$$
\left(\begin{array}{ccc}
0 & q_{21} & q_{31} \\
q_{21}-q_{23} q_{31} & 0 & q_{23} \\
q_{31} & q_{23} & 0
\end{array}\right)
$$

## Proof of invariance (triple move): Case I (continued)

- Right-equivalence: $p_{21} \mapsto p_{21}-p_{23} p_{31}$ and identity for the rest. Then matrices will match, indeed

$$
\left(\begin{array}{ccc}
0 & p_{21}+p_{23} p_{31} & p_{31} \\
p_{21} & 0 & p_{23} \\
p_{31} & p_{23} & 0
\end{array}\right)
$$

now becomes
$\left(\begin{array}{ccc}0 & \left(p_{21}-p_{23} p_{31}\right)+p_{23} p_{31} & p_{31} \\ \left(p_{21}-p_{23} p_{31}\right) & 0 & p_{23} \\ p_{31} & p_{23} & 0\end{array}\right)=\left(\begin{array}{ccc}0 & p_{21} & p_{31} \\ p_{21}-p_{23} p_{31} & 0 & p_{23} \\ p_{31} & p_{23} & 0\end{array}\right)$,
which is the second matrix we had relabeled, thus concludes first case.

## Proof of invariance (triple move): Case II



$$
\left(\begin{array}{ccc}
0 & p_{21} & p_{13} \\
p_{21} & 0 & p_{32} \\
p_{13} & p_{32} & 0
\end{array}\right), \quad \text { plus monomial } p_{13} p_{32} p_{21}
$$

## Proof of invariance (triple move): Case II

(i)


$$
\left(\begin{array}{ccc}
0 & p_{21} & p_{13} \\
p_{21} & 0 & p_{32} \\
p_{13} & p_{32} & 0
\end{array}\right), \quad \text { plus monomial } p_{13} p_{32} p_{21}
$$

(ii)


$$
\left(\begin{array}{ccc}
0 & q_{21} & q_{13} \\
q_{21} & 0 & q_{32} \\
q_{13} & q_{32} & 0
\end{array}\right), \quad \text { plus monomial } q_{13} q_{32} q_{21}
$$

## Bigon moves

## Eliminating bigons: Extracting the reduced part

By [DWZ], every $(Q, W)$ breaks into a trivial and reduced parts:
$\left(Q_{\text {triv }}, W_{\text {triv }}\right) \oplus\left(Q_{\text {red }}, W_{\text {red }}\right)$. (Intuitively, trivial contains 2-cycles seen by $W$.)

## Bigon moves

## Eliminating bigons: Extracting the reduced part

By [DWZ], every $(Q, W)$ breaks into a trivial and reduced parts:
$\left(Q_{\text {triv }}, W_{\text {triv }}\right) \oplus\left(Q_{\text {red }}, W_{\text {red }}\right)$. (Intuitively, trivial contains 2-cycles seen by $W$.)

## Proposition

Let $(Q(\mathcal{C}), W(\mathcal{C}))$ be a curve $Q P$ associated to $\mathcal{C}$ and $\mathcal{C}_{\text {red }}$ the result of applying the Hass-Scott algorithm removing all bigons. Then

$$
\left(Q\left(\mathcal{C}_{\text {red }}\right), W\left(\mathcal{C}_{\text {red }}\right)\right)=\left(Q(\mathcal{C})_{\text {red }}, W(\mathcal{C})_{\text {red }}\right)
$$

is the reduced part of $(Q(\mathcal{C}), W(\mathcal{C}))$.

## Bigon moves

## Eliminating bigons: Extracting the reduced part

By [DWZ], every $(Q, W)$ breaks into a trivial and reduced parts:
$\left(Q_{\text {triv }}, W_{\text {triv }}\right) \oplus\left(Q_{\text {red }}, W_{\text {red }}\right)$. (Intuitively, trivial contains 2-cycles seen by $W$.)

## Proposition

Let $(Q(\mathcal{C}), W(\mathcal{C}))$ be a curve $Q P$ associated to $\mathcal{C}$ and $\mathcal{C}_{\text {red }}$ the result of applying the Hass-Scott algorithm removing all bigons. Then

$$
\left(Q\left(\mathcal{C}_{\text {red }}\right), W\left(\mathcal{C}_{\text {red }}\right)\right)=\left(Q(\mathcal{C})_{\text {red }}, W(\mathcal{C})_{\text {red }}\right)
$$

is the reduced part of $(Q(\mathcal{C}), W(\mathcal{C}))$.

Therefore, in the context of curve QP, we know that extracting the reduced part of curve QP is achieved by removing bigons.

## Curve QPs under Lagrangian disk surgery

Disk surgery: Inducing QP-mutations

By [DWZ], QP-mutation consists of a quiver mutation without eliminating 2-cycles, a change in $W$, and then taking the reduced part.

## Curve QPs under Lagrangian disk surgery

## Disk surgery: Inducing QP-mutations

By [DWZ], QP-mutation consists of a quiver mutation without eliminating 2-cycles, a change in $W$, and then taking the reduced part.

## Proposition

Let $(Q(\mathcal{C}), W(\mathcal{C}))$ be a curve $Q P$ associated to $\mathcal{C}$ and $\gamma \in \mathcal{C}$. Then the curve $Q P$ associated to the $\gamma$-exchange of $\mathcal{C}$ is the $Q P$-mutation of $(Q(\mathcal{C}), W(\mathcal{C}))$ at $\gamma$ :

$$
\left(Q\left(\mu_{\gamma}(\mathcal{C})\right), W\left(\mu_{\gamma}(\mathcal{C})\right)\right)=\left(\mu_{\gamma}(Q(\mathcal{C})), \mu_{\gamma}(W(\mathcal{C}))\right)
$$

## Curve QPs under Lagrangian disk surgery

## Disk surgery: Inducing QP-mutations

By [DWZ], QP-mutation consists of a quiver mutation without eliminating 2-cycles, a change in $W$, and then taking the reduced part.

## Proposition

Let $(Q(\mathcal{C}), W(\mathcal{C}))$ be a curve $Q P$ associated to $\mathcal{C}$ and $\gamma \in \mathcal{C}$. Then the curve $Q P$ associated to the $\gamma$-exchange of $\mathcal{C}$ is the $Q P$-mutation of $(Q(\mathcal{C}), W(\mathcal{C}))$ at $\gamma$ :

$$
\left(Q\left(\mu_{\gamma}(\mathcal{C})\right), W\left(\mu_{\gamma}(\mathcal{C})\right)\right)=\left(\mu_{\gamma}(Q(\mathcal{C})), \mu_{\gamma}(W(\mathcal{C}))\right)
$$

Therefore, in the context of curve QP, performing a $\gamma$-exchange (e.g. from Lagrangian disk surgery) is a QP-mutation.

## Example of QP-mutation from $\gamma$-exchange

Let us work out the change in the quiver in a simple scenario:


## Example of QP-mutation from $\gamma$-exchange (continued)

The change in polygons in this scenario:


## Steps for surjectivity

1. Construct a filling $L$ and an $\mathbb{L}$-compressing system $\mathfrak{D}$ such that the associated curve QP $(Q(\mathfrak{D}), W(\mathfrak{D}))$ is non-degenerate.

Non-degeneracy guarantees that no 2-cycles ever appear when mutating $(Q(\mathfrak{D}), W(\mathfrak{D}))$, so you can mutate forever. How is this achieved?

## Steps for surjectivity

1. Construct a filling $L$ and an $\mathbb{L}$-compressing system $\mathfrak{D}$ such that the associated curve QP $(Q(\mathfrak{D}), W(\mathfrak{D}))$ is non-degenerate.

Non-degeneracy guarantees that no 2-cycles ever appear when mutating $(Q(\mathfrak{D}), W(\mathfrak{D}))$, so you can mutate forever. How is this achieved?
2. The construction uses conjugate surfaces associated to plabic fences:


## Steps for surjectivity II

3. Use that conjugate surface can be made an embedded exact Lagrangian filling and plabic faces give $\mathbb{L}$-compressing disks. ( $\leftarrow$ weaves work too)


## Steps for surjectivity II

3. Use that conjugate surface can be made an embedded exact Lagrangian filling and plabic faces give $\mathbb{L}_{\text {-compressing disks. ( } \leftarrow \text { weaves work too) }}$

4. Prove that the resulting curve QP is rigid, which implies non-degenerate. (Rigid is intuitively that there are no non-trivial infinitesimal deformations: trace space of Jacobian algebra is just the ground ring.)

## Steps for surjectivity II

3. Use that conjugate surface can be made an embedded exact Lagrangian filling and plabic faces give $\mathbb{L}$-compressing disks. ( $\leftarrow$ weaves work too)

4. Prove that the resulting curve QP is rigid, which implies non-degenerate. (Rigid is intuitively that there are no non-trivial infinitesimal deformations: trace space of Jacobian algebra is just the ground ring.)
This is achieved via induction, using an interesting combinatorial property of these quivers: the rightmost vertex can always be turned into a source/sink via mutations. ( $\leftarrow$ triangular extensions)

## A few questions

1. Injectivity of $\mathfrak{C}$ ? I conjecture yes (open even for the trefoil $A_{2}$-case).

## A few questions

1. Injectivity of $\mathfrak{C}$ ? I conjecture yes (open even for the trefoil $A_{2}$-case).
2. Surjectivity of $\mathfrak{C}$ is proven now: can we prove that every seed comes from a weave? ( $\leftarrow$ Also conjecture yes: see harmonic maps to affine buildings)

## A few questions

1. Injectivity of $\mathfrak{C}$ ? I conjecture yes (open even for the trefoil $A_{2}$-case).
2. Surjectivity of $\mathfrak{C}$ is proven now: can we prove that every seed comes from a weave? ( $\leftarrow$ Also conjecture yes: see harmonic maps to affine buildings)
3. Relating this curve $Q P$ to the CY3 context and understanding how algebra of this QP relates to 4D symplectic topology.

## A few questions

1. Injectivity of $\mathfrak{C}$ ? I conjecture yes (open even for the trefoil $A_{2}$-case).
2. Surjectivity of $\mathfrak{C}$ is proven now: can we prove that every seed comes from a weave? ( $\leftarrow$ Also conjecture yes: see harmonic maps to affine buildings)
3. Relating this curve $Q P$ to the CY3 context and understanding how algebra of this $Q P$ relates to 4D symplectic topology.
4. Given a Lagrangian filling $L$, how many $\mathbb{L}$-compressing system are there for it? Also, how many cluster structures exist on $\mathfrak{M}\left(\Lambda_{\beta}\right)$ ?

## A few questions

1. Injectivity of $\mathfrak{C}$ ? I conjecture yes (open even for the trefoil $A_{2}$-case).
2. Surjectivity of $\mathfrak{C}$ is proven now: can we prove that every seed comes from a weave? ( $\leftarrow$ Also conjecture yes: see harmonic maps to affine buildings)
3. Relating this curve QP to the CY3 context and understanding how algebra of this $Q P$ relates to 4D symplectic topology.
4. Given a Lagrangian filling $L$, how many $\mathbb{L}$-compressing system are there for it? Also, how many cluster structures exist on $\mathfrak{M}\left(\Lambda_{\beta}\right)$ ?
5. Generalize this program for a general $\Lambda$. This includes building the right $\mathbb{L}$-compressing systems and understanding what it means for a dg-category (or at least a $D^{-}$-stack) to be a cluster algebra.

We reached the end.

## Thanks a lot for attending these lectures!



