Proof of Theorem

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Cluster algebras and symplectic topology III

Summer School on Cluster Algebras 2023

Roger Casals (UC Davis) August 23rd 2023

Introduction	Curve QPs 0000000000	Proof of Theorem	Questions
Today's focus			

Goal: Show that every cluster seed in $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ comes from a filling.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Introduction	Curve QPs	Proof of Theorem	Questions
○●○○○○	0000000000		OO
Making the state	ement precise		

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Introduction	Curve QPs	Proof of Theorem	Questions
O●OOOO	0000000000	୦୦	00
Making the state	ement precise		

1. Lag(Λ_{β}) := {embedded exact Lagrangian fillings of Λ_{β} }/ $\sim_{Ham.}$.

Introduction	Curve QPs	Proof of Theorem ೧೧	Questions
Making the state	ement precise		

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. Lag(Λ_{β}) := {embedded exact Lagrangian fillings of Λ_{β} }/ $\sim_{Ham.}$. Toric($X(\Lambda_{\beta}, T)$) := {unparametrized algebraic toric charts in $\mathfrak{M}(\Lambda)$ }.

Introduction	Curve QPs 0000000000	Proof of Theorem	Questions
Making the state	ement precise		

 Lag(Λ_β) := {embedded exact Lagrangian fillings of Λ_β}/ ~_{Ham.}. Toric(X(Λ_β, T)) := {unparametrized algebraic toric charts in M(Λ)}. ∃ a map C° : Lag(Λ_β) → Toric(X(Λ_β, T)), C°(L) := T_L.

Introduction	Curve QPs	Proof of Theorem	Questions
O●OOOO	0000000000	00	
Making the state	ement precise		

 Lag(Λ_β) := {embedded exact Lagrangian fillings of Λ_β}/ ~_{Ham}. Toric(X(Λ_β, T)) := {unparametrized algebraic toric charts in M(Λ)}. ∃ a map C° : Lag(Λ_β) → Toric(X(Λ_β, T)), C°(L) := T_L.

2. $Lag^{c}(\Lambda_{\beta}) := \{(L,\Gamma) : L \in Lag(\Lambda_{\beta}), \text{ cluster } \mathbb{L}\text{-compressing system } \Gamma\}$

Introduction	Curve QPs	Proof of Theorem	Questions
O●OOOO	೧೧೧೧೧೧೧೧೧೧		OO
Making the state	ement precise		

- Lag(Λ_β) := {embedded exact Lagrangian fillings of Λ_β}/ ~_{Ham.}. Toric(X(Λ_β, T)) := {unparametrized algebraic toric charts in M(Λ)}.
 ∃ a map 𝔅^o : Lag(Λ_β) → Toric(X(Λ_β, T)), 𝔅^o(L) := T_L.
- Lag^c(Λ_β) := {(L, Γ) : L ∈ Lag(Λ_β), cluster L-compressing system Γ}
 Seed(X(Λ_β)) := {cluster seeds in C[X(Λ_β)]}.

Introduction	Curve QPs	Proof of Theorem	Questions
	0000000000	00	ດດ
Making the	statement precise		

- Lag(Λ_β) := {embedded exact Lagrangian fillings of Λ_β}/ ~_{Ham.}. Toric(X(Λ_β, T)) := {unparametrized algebraic toric charts in M(Λ)}. ∃ a map C° : Lag(Λ_β) → Toric(X(Λ_β, T)), C°(L) := T_L.
- 2. Lag^c(Λ_{β}) := {(L, Γ) : $L \in Lag(\Lambda_{\beta})$, cluster \mathbb{L} -compressing system Γ } Seed($X(\Lambda_{\beta})$) := {cluster seeds in $\mathbb{C}[X(\Lambda_{\beta})]$ }.
 - $\exists \text{ a map } \mathfrak{C}^{\circ} : \mathsf{Lag}^{\mathsf{c}}(\Lambda_{\beta}) \longrightarrow \mathsf{Seed}(X(\Lambda_{\beta}, T)), \quad \mathfrak{C}(L, \Gamma) := (T_L, A(\Gamma)).$

Introduction	Curve QPs	Proof of Theorem	Questions
	0000000000	00	ດດ
Making the	statement precise		

- Lag(Λ_β) := {embedded exact Lagrangian fillings of Λ_β}/ ~_{Ham.}. Toric(X(Λ_β, T)) := {unparametrized algebraic toric charts in M(Λ)}. ∃ a map C° : Lag(Λ_β) → Toric(X(Λ_β, T)), C°(L) := T_L.
- Lag^c(Λ_β) := {(L, Γ) : L ∈ Lag(Λ_β), cluster L-compressing system Γ}
 Seed(X(Λ_β)) := {cluster seeds in C[X(Λ_β)]}.
 ∃ a map C° : Lag^c(Λ_β) → Seed(X(Λ_β, T)), C(L, Γ) := (T_L, A(Γ)).
- 3. Central question: surjectivity and injectivity of \mathfrak{C}° and \mathfrak{C} ? (If \mathfrak{C} surjects, then \mathfrak{C}° surjects onto Seed($X(\Lambda_{\beta}, T)$), subset of Toric($X(\Lambda_{\beta}, T)$).)

Introduction	Curve QPs	Proof of Theorem	Questions
	0000000000	00	OO
What we knew			

・ロト・日本・ヨト・ヨト・日・ つへぐ

It is (unfortunately) easy to review all that is known on this:

Introduction	Curve QPs ೧೧೧೧೧೧೧೧೧೧	Proof of Theorem 00	Questions
What we knew			
It is (unfortunately	y) easy to review a	I that is known on this:	

1. Injectivity is known only when Λ_{β} is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^2$. (\leftarrow non-trivial result)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Introduction	Curve QPs ೧೦೧೧೧೧೧೧೧೧	Proof of Theorem OO	Questions ດດ
What we knew			
It is (unfortunately	easy to review all that is	known on this:	

1. Injectivity is known only when Λ_{β} is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^2$. (\leftarrow non-trivial result)

ション ふぼう メリン メリン しょうくしゃ

2. *Surjectivity* is known only for ADE cases: finite and affines types. (B.H. An-Y. Bae-E. Lee, J. Hughes & Y. Pan)

Introduction	Curve QPs 0000000000	Proof of Theorem	Questions OO
What we knew			
It is (unfortunatel	y) easy to review all	that is known on this:	

- 1. Injectivity is known only when Λ_{β} is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^2$. (\leftarrow non-trivial result)
- Surjectivity is known only for ADE cases: finite and affines types. (B.H. An-Y. Bae-E. Lee, J. Hughes & Y. Pan)
- 3. In previous work: symplectically realized elements of the cluster modular group and showed that it surjects onto some infinite families in Seed $(X(\Lambda_{\beta}, T))$. (\leftarrow braid group actions in Gr(k, kn), Donaldson-Thomas)

ション ふぼう メリン メリン しょうくしゃ

Introduction	Curve QPs 0000000000	Proof of Theorem	Questions OO
What we knew			
It is (unfortunatel	y) easy to review all	that is known on this:	

- 1. Injectivity is known only when Λ_{β} is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^2$. (\leftarrow non-trivial result)
- 2. *Surjectivity* is known only for ADE cases: finite and affines types. (B.H. An-Y. Bae-E. Lee, J. Hughes & Y. Pan)
- 3. In previous work: symplectically realized elements of the cluster modular group and showed that it surjects onto some infinite families in Seed $(X(\Lambda_{\beta}, T))$. (\leftarrow braid group actions in Gr(k, kn), Donaldson-Thomas)
- 4. I suspect *new ideas* are needed to tackle both injectivity and surjectivity: current methods seem to all fall significantly short.

ション ふぼう メリン メリン しょうくしゃ

Introduction	Curve QPs 0000000000	Proof of Theorem	Questions OO
What we knew			
It is (unfortunatel	y) easy to review all	that is known on this:	

- 1. Injectivity is known only when Λ_{β} is the unknot. In that case, $\mathfrak{M}(\Lambda)$ is a point and there is a unique filling $L \cong \mathbb{D}^2$. (\leftarrow non-trivial result)
- Surjectivity is known only for ADE cases: finite and affines types. (B.H. An-Y. Bae-E. Lee, J. Hughes & Y. Pan)
- 3. In previous work: symplectically realized elements of the cluster modular group and showed that it surjects onto some infinite families in Seed $(X(\Lambda_{\beta}, T))$. (\leftarrow braid group actions in Gr(k, kn), Donaldson-Thomas)
- 4. I suspect *new ideas* are needed to tackle both injectivity and surjectivity: current methods seem to all fall significantly short.

Today: Focus on surjectivity.

Also, we restrict to Λ_{β} with $\beta = w_0 \gamma w_0$. (We write Λ_{β} to mean $\Lambda_{w_0\beta w_0}$ onward.)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Main result I: Surjectivity

Theorem (2023)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β and $X(\Lambda_{\beta})$ its augmentation variety, with one marked point per component. Then the set-theoretic map

 $\mathfrak{C}: Lag^{c}(\Lambda_{\beta}) \longrightarrow Seed(X(\Lambda_{\beta}))$

is surjective, i.e. each cluster seed is induced by an embedded exact Lagrangian filling endowed with an \mathbb{L} -compressing system.

Proof of Theorem

ション ふゆ アメリア メリア しょうくしゃ

Main result I: Surjectivity

Theorem (2023)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β and $X(\Lambda_{\beta})$ its augmentation variety, with one marked point per component. Then the set-theoretic map

 $\mathfrak{C}: Lag^{c}(\Lambda_{\beta}) \longrightarrow Seed(X(\Lambda_{\beta}))$

is surjective, i.e. each cluster seed is induced by an embedded exact Lagrangian filling endowed with an \mathbb{L} -compressing system.

• Even better: show that any sequence of cluster mutations can be realized by a sequence of Lagrangian disk surgeries.

Main result I: Surjectivity

Theorem (2023)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β and $X(\Lambda_{\beta})$ its augmentation variety, with one marked point per component. Then the set-theoretic map

 $\mathfrak{C}: Lag^{c}(\Lambda_{\beta}) \longrightarrow Seed(X(\Lambda_{\beta}))$

is surjective, i.e. each cluster seed is induced by an embedded exact Lagrangian filling endowed with an \mathbb{L} -compressing system.

- Even better: show that any sequence of cluster mutations can be realized by a sequence of Lagrangian disk surgeries.
- Non-trivial problem: in algebra mutation automatically removes 2-cycles (by fiat), in geometry this is not at all immediate, e.g. algebraic intersection 0 but geometric intersection 2.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Main result II: The technical statement

Theorem (2023)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β . Then there exists an embedded exact Lagrangian filling $L \subset (\mathbb{R}^4, \lambda_{st})$ of Λ_{β} and an \mathbb{L} -compressing system Γ for L such that the following holds:

Proof of Theorem

ション ふゆ アメリア メリア しょうくしゃ

Main result II: The technical statement

Theorem (2023)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β . Then there exists an embedded exact Lagrangian filling $L \subset (\mathbb{R}^4, \lambda_{st})$ of Λ_{β} and an \mathbb{L} -compressing system Γ for L such that the following holds:

(i) If μ_{vℓ} ... μ_{v1} is any sequence of mutations, where v₁,..., v_ℓ are mutable vertices of the quiver Q(c(L, Γ)) associated to the cluster seed c(L, Γ) of L in C[X(Λ_β)], then there exists a sequence of embedded exact Lagrangian fillings L_k of Λ_β, each equipped with an L-compressing system Γ_k, with associated cluster seeds

$$\mathfrak{c}(L_k,\Gamma_k)=\mu_{v_k}\ldots\mu_{v_1}(\mathfrak{c}(L,\Gamma))$$

in $\mathbb{C}[X(\Lambda_{\beta})]$, for all $k \in [\ell]$.

ション ふゆ アメリア メリア しょうくしゃ

Main result II: The technical statement

Theorem (2023)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β . Then there exists an embedded exact Lagrangian filling $L \subset (\mathbb{R}^4, \lambda_{st})$ of Λ_{β} and an \mathbb{L} -compressing system Γ for L such that the following holds:

(i) If μ_{vℓ} ... μ_{v1} is any sequence of mutations, where v₁,..., v_ℓ are mutable vertices of the quiver Q(c(L, Γ)) associated to the cluster seed c(L, Γ) of L in C[X(Λ_β)], then there exists a sequence of embedded exact Lagrangian fillings L_k of Λ_β, each equipped with an L-compressing system Γ_k, with associated cluster seeds

$$\mathfrak{c}(L_k, \Gamma_k) = \mu_{v_k} \dots \mu_{v_1}(\mathfrak{c}(L, \Gamma))$$

in $\mathbb{C}[X(\Lambda_{\beta})]$, for all $k \in [\ell]$.

(ii) Each L-compressing system Γ_k for L_k is such that Lagrangian disk surgery on L_k along any Lagrangian disk in $\mathfrak{D}(\Gamma_k)$ yields an L-compressing system. In addition, Γ_{k+1} is equivalent to this L-compressing system via a sequence of triple point moves and local bigon moves.

Proof of Theorem

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Main result II: The technical statement

Theorem (2023)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β . Then there exists an embedded exact Lagrangian filling $L \subset (\mathbb{R}^4, \lambda_{st})$ of Λ_{β} and an \mathbb{L} -compressing system Γ for L such that the following holds:

 (i) If μ_{vℓ} ... μ_{v1} is any sequence of mutations, where v₁,..., v_ℓ are mutable vertices of the quiver Q(c(L, Γ)) associated to the cluster seed c(L, Γ) of L in C[X(Λ_β)], then there exists a sequence of embedded exact Lagrangian fillings L_k of Λ_β, each equipped with an L-compressing system Γ_k, with associated cluster seeds

$$\mathfrak{c}(L_k, \Gamma_k) = \mu_{v_k} \dots \mu_{v_1}(\mathfrak{c}(L, \Gamma))$$

in $\mathbb{C}[X(\Lambda_{\beta})]$, for all $k \in [\ell]$.

(ii) Each \mathbb{L} -compressing system Γ_k for L_k is such that Lagrangian disk surgery on L_k along any Lagrangian disk in $\mathfrak{D}(\Gamma_k)$ yields an \mathbb{L} -compressing system. In addition, Γ_{k+1} is equivalent to this \mathbb{L} -compressing system via a sequence of triple point moves and local bigon moves.

Non-trivial problem (alternative): need to show that an $\mathbb{L}\text{-compressing}$ system persists under Lagrangian disk surgeries.

What may go wrong?

Let \mathfrak{D} be an \mathbb{L} -compressing system for L and $\Gamma = \{\gamma_1, \ldots, \gamma_b\}$ the set of curves in L given by the boundaries of the disks, $b = b_1(L)$.

 Introduction
 Curve QPs
 Proof of Theorem
 Questions

 What may go wrong?

Let \mathfrak{D} be an \mathbb{L} -compressing system for L and $\Gamma = \{\gamma_1, \ldots, \gamma_b\}$ the set of curves in L given by the boundaries of the disks, $b = b_1(L)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(i) A Lagrangian disk surgery along $D_i \in \mathfrak{D}$ changes curves in Γ via:

What may go wrong?

Let \mathfrak{D} be an \mathbb{L} -compressing system for L and $\Gamma = \{\gamma_1, \ldots, \gamma_b\}$ the set of curves in L given by the boundaries of the disks, $b = b_1(L)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(i) A Lagrangian disk surgery along $D_i \in \mathfrak{D}$ changes curves in Γ via:

$$\gamma_i \to -\gamma_i$$
 if $i=j$,

What may go wrong?

Let \mathfrak{D} be an \mathbb{L} -compressing system for L and $\Gamma = \{\gamma_1, \ldots, \gamma_b\}$ the set of curves in L given by the boundaries of the disks, $b = b_1(L)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(i) A Lagrangian disk surgery along $D_i \in \mathfrak{D}$ changes curves in Γ via:

$$egin{aligned} &\gamma_i
ightarrow -\gamma_i ext{ if } i=j, \ &\gamma_j
ightarrow \gamma_j ext{ if } \gamma_j \cdot \gamma_i < 0, \end{aligned}$$

What may go wrong?

Let \mathfrak{D} be an \mathbb{L} -compressing system for L and $\Gamma = \{\gamma_1, \ldots, \gamma_b\}$ the set of curves in L given by the boundaries of the disks, $b = b_1(L)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(i) A Lagrangian disk surgery along $D_i \in \mathfrak{D}$ changes curves in Γ via:

$$\begin{array}{l} \gamma_i \to -\gamma_i \text{ if } i=j, \\ \gamma_j \to \gamma_j \text{ if } \gamma_j \cdot \gamma_i < 0, \\ \gamma_j \to \tau_i(\gamma_j) \text{ if } \gamma_j \cdot \gamma_i > 0. \end{array}$$

 Introduction
 Curve QPs
 Proof of Theorem
 Questions

 OOOOOO●
 OOOOOOOOOOOO
 OO
 OO

What may go wrong?

Let \mathfrak{D} be an \mathbb{L} -compressing system for L and $\Gamma = \{\gamma_1, \ldots, \gamma_b\}$ the set of curves in L given by the boundaries of the disks, $b = b_1(L)$.

ション ふぼう メリン メリン しょうくしゃ

(i) A Lagrangian disk surgery along $D_i \in \mathfrak{D}$ changes curves in Γ via:

$$\begin{array}{l} \gamma_i \to -\gamma_i \text{ if } i = j, \\ \gamma_j \to \gamma_j \text{ if } \gamma_j \cdot \gamma_i < 0, \\ \gamma_i \to \tau_i(\gamma_i) \text{ if } \gamma_j \cdot \gamma_i > 0 \end{array}$$

This is called a γ -exchange of Γ along γ .

(ii) This process creates a new configuration of curves μ_i(Γ). The intersection quiver Q(μ_i(Γ)) of μ_i(Γ) is the mutation at γ_i of the intersection quiver Q(Γ) except that it might have 2-cycles.

 Introduction
 Curve QPs
 Proof of Theorem
 Questions

 OOOOO●
 OOOOOOOOOOOOO
 OO
 OO

What may go wrong?

Let \mathfrak{D} be an \mathbb{L} -compressing system for L and $\Gamma = \{\gamma_1, \ldots, \gamma_b\}$ the set of curves in L given by the boundaries of the disks, $b = b_1(L)$.

(i) A Lagrangian disk surgery along $D_i \in \mathfrak{D}$ changes curves in Γ via:

$$\begin{array}{l} \gamma_i \to -\gamma_i \text{ if } i = j, \\ \gamma_j \to \gamma_j \text{ if } \gamma_j \cdot \gamma_i < 0, \\ \gamma_i \to \tau_i(\gamma_i) \text{ if } \gamma_i \cdot \gamma_i > 0. \end{array}$$

This is called a γ -exchange of Γ along γ .

- (ii) This process creates a new configuration of curves μ_i(Γ). The intersection quiver Q(μ_i(Γ)) of μ_i(Γ) is the mutation at γ_i of the intersection quiver Q(Γ) except that it might have 2-cycles.
- (iii) If one applies Lagrangian disk surgery along a disk whose boundary is a vertex part of a 2-cycle, then it results in an **immersed curve**.

Problem: Lagrangian surgery works for embedded, not immersed!

 Introduction
 Curve QPs
 Proof of Theorem
 Questions

 OOOOO●
 OOOOOOOOOOOO
 OO
 OO

What may go wrong?

Let \mathfrak{D} be an \mathbb{L} -compressing system for L and $\Gamma = \{\gamma_1, \ldots, \gamma_b\}$ the set of curves in L given by the boundaries of the disks, $b = b_1(L)$.

(i) A Lagrangian disk surgery along $D_i \in \mathfrak{D}$ changes curves in Γ via:

$$egin{aligned} &\gamma_i o -\gamma_i ext{ if } i=j, \ &\gamma_j o \gamma_j ext{ if } \gamma_j \cdot \gamma_i < 0, \ &\gamma_i o au_i(\gamma_i) ext{ if } \gamma_i \cdot \gamma_i > 0. \end{aligned}$$

This is called a γ -exchange of Γ along γ .

- (ii) This process creates a new configuration of curves μ_i(Γ). The intersection quiver Q(μ_i(Γ)) of μ_i(Γ) is the mutation at γ_i of the intersection quiver Q(Γ) except that it might have 2-cycles.
- (iii) If one applies Lagrangian disk surgery along a disk whose boundary is a vertex part of a 2-cycle, then it results in an **immersed curve**.

Problem: Lagrangian surgery works for embedded, not immersed!

The issue was the bigon: need to understand when they can be removed!

	odu	
00	0C	

Curve QPs ●00000000000 Proof of Theorem

Questions

Curve Quiver with Potential

Idea: Construct a QP that keeps tracks of polygons

Introduction	Curve QPs	Proof of Theorem	Questions
೧೧೧೧೧೧	●000000000	ଠଠ	ດດ
Curve Quiv	ver with Potential		

Let Σ be an oriented surface and C = {γ₁,..., γ_b}, b ∈ N, a collection of embedded oriented closed connected curves γ_i ⊂ Σ.

ション ふゆ アメビア メロア しょうくしゃ

(\rightarrow this will all be a *smooth* construction, no symplectic topology!)

Introduction	Curve QPs	Proof of Theorem	Questions
೧೧೧೧೧೧	•000000000	ରଠ	ດດ
Curve Quiv	ver with Potential		

- Let Σ be an oriented surface and C = {γ₁,..., γ_b}, b ∈ N, a collection of embedded oriented closed connected curves γ_i ⊂ Σ.
 (→ this will all be a *smooth* construction, no symplectic topology!)
- Suppose that their homology classes in $H_1(L, \mathbb{Z})$ are linearly independent. (or weaker "bigon sides" condition)

ション ふゆ アメビア メロア しょうくしゃ

Introduction ဂဂဂဂဂဂ	Curve QPs OCOCOCOCOCO	Proof of Theorem	Questions
	ver with Potential		

- Let Σ be an oriented surface and C = {γ₁,..., γ_b}, b ∈ N, a collection of embedded oriented closed connected curves γ_i ⊂ Σ.
 (→ this will all be a *smooth* construction, no symplectic topology!)
- Suppose that their homology classes in $H_1(L, \mathbb{Z})$ are linearly independent. (or weaker "bigon sides" condition)

ション ふぼう メリン メリン しょうくしゃ

• By definition, the quiver Q(C) has vertices the γ_i and arrows their *geometric* intersections.

Introduction	Curve QPs	Proof of Theorem	Questic
೧೦೧೧೧೧	●೧೧೧೧೧೧೧೧		OO
	ar with Potential		

- Let Σ be an oriented surface and C = {γ₁,..., γ_b}, b ∈ N, a collection of embedded oriented closed connected curves γ_i ⊂ Σ.
 (→ this will all be a *smooth* construction, no symplectic topology!)
- Suppose that their homology classes in H₁(L, ℤ) are linearly independent. (or weaker "bigon sides" condition)
- By definition, the quiver Q(C) has vertices the γ_i and arrows their *geometric* intersections.
- We want to build a potential W(C) ∈ HH₀(Q(C)) for Q(C) that keeps track of the *polygons* in Σ bounded by curves in C.

ション ふぼう メリン メリン しょうくしゃ

Introduction	Curve QPs	Proof of Theorem	Questions
೧೧೧೧೧೧	೧೦೦೧೦೧೦೧೦	00	OO
The Potential	$W(\mathcal{C})$		

・ロト・雪・・雪・・雪・・白・

Introduction	Curve QPs	Proof of Theorem	Questions
೧೧೧೧೧೧	೧೦೧೧೧೧೧೧೧		ດດ
The Potential	$M(\mathcal{C})$		

1. The potential $W(\mathcal{C}) \in HH_0(\mathcal{Q}(\mathcal{C}))$ of $\mathcal{Q}(\mathcal{C})$ is defined by

$$\mathcal{W}(\mathcal{C}) = \sum_{\mathsf{v}_1 \dots \mathsf{v}_\ell \in \mathsf{\Gamma}_\ell^+} \sigma(\mathsf{v}_1 \dots \mathsf{v}_\ell) \cdot \mathsf{v}_\ell \dots \mathsf{v}_1 \quad - \sum_{\mathsf{w}_1 \dots \mathsf{w}_\ell \in \mathsf{\Gamma}_\ell^-} \sigma(\mathsf{w}_1 \dots \mathsf{w}_\ell) \cdot \mathsf{w}_1 \dots \mathsf{w}_\ell,$$

where $\Gamma_{\ell}^{\pm} = \{\ell \text{-gons bounded by } \mathcal{C} \text{ which are } \pm \text{-oriented}\}$. (Here σ is sign for \mathbb{Z} .)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Curve QPs	Proof of Theorem	Questions
ດດດດດດ	o⊜ooooooooo		OO
The Poten	tial $W(C)$		

1. The potential $W(\mathcal{C}) \in HH_0(\mathcal{Q}(\mathcal{C}))$ of $\mathcal{Q}(\mathcal{C})$ is defined by

$$\mathcal{W}(\mathcal{C}) = \sum_{\mathsf{v}_1 \dots \mathsf{v}_\ell \in \mathsf{\Gamma}_\ell^+} \sigma(\mathsf{v}_1 \dots \mathsf{v}_\ell) \cdot \mathsf{v}_\ell \dots \mathsf{v}_1 \quad - \sum_{\mathsf{w}_1 \dots \mathsf{w}_\ell \in \mathsf{\Gamma}_\ell^-} \sigma(\mathsf{w}_1 \dots \mathsf{w}_\ell) \cdot \mathsf{w}_1 \dots \mathsf{w}_\ell,$$

where $\Gamma_{\ell}^{\pm} = \{\ell \text{-gons bounded by } \mathcal{C} \text{ which are } \pm \text{-oriented}\}.$ (Here σ is sign for \mathbb{Z} .)

ション ふゆ アメビア メロア しょうくしゃ

2. By definition, $(Q(\mathcal{C}), W(\mathcal{C}))$ is the curve quiver with potential of \mathcal{C} .

Introduction	Curve QPs	Proof of Theorem	Questions
೧೦೧೧೧೧	೧●೧೧೧೧೧೧೧		OO
The Poten	tial $W(\mathcal{C})$		

1. The potential $W(\mathcal{C}) \in HH_0(\mathcal{Q}(\mathcal{C}))$ of $\mathcal{Q}(\mathcal{C})$ is defined by

$$\mathcal{W}(\mathcal{C}) = \sum_{\mathsf{v}_1 \dots \mathsf{v}_\ell \in \mathsf{\Gamma}_\ell^+} \sigma(\mathsf{v}_1 \dots \mathsf{v}_\ell) \cdot \mathsf{v}_\ell \dots \mathsf{v}_1 \quad - \sum_{\mathsf{w}_1 \dots \mathsf{w}_\ell \in \mathsf{\Gamma}_\ell^-} \sigma(\mathsf{w}_1 \dots \mathsf{w}_\ell) \cdot \mathsf{w}_1 \dots \mathsf{w}_\ell,$$

where $\Gamma_{\ell}^{\pm} = \{\ell \text{-gons bounded by } \mathcal{C} \text{ which are } \pm \text{-oriented}\}.$ (Here σ is sign for \mathbb{Z} .)

- 2. By definition, $(Q(\mathcal{C}), W(\mathcal{C}))$ is the curve quiver with potential of \mathcal{C} .
- 3. There is a notion of QP-mutation due to Derksen-Weyman-Zelevinsky (DWZ). Also, we consider QPs up to right-equivalence.

What properties do we need for such curve QPs?

In order to get rid of bigons, we use the following:

Theorem (Hass-Scott Algorithm)

Let C_0 be a configuration with a collection of bigons $\{B_1, \ldots, B_m\}$. Then, for any $i \in [m]$, there exists a sequence of triple point moves and one local bigon move on C_0 that yields a new configuration C_1 such that the collection of bigons of C_1 is $\{B_1, \ldots, B_m\} \setminus \{B_i\}$.

ション ふゆ アメビア メロア しょうくしゃ

What properties do we need for such curve QPs?

In order to get rid of bigons, we use the following:

Theorem (Hass-Scott Algorithm)

Let C_0 be a configuration with a collection of bigons $\{B_1, \ldots, B_m\}$. Then, for any $i \in [m]$, there exists a sequence of triple point moves and one local bigon move on C_0 that yields a new configuration C_1 such that the collection of bigons of C_1 is $\{B_1, \ldots, B_m\} \setminus \{B_i\}$.

 We must understand behavior of curve QPs under triple point moves and bigon moves. (→ change in quiver and potential)

What properties do we need for such curve QPs?

In order to get rid of bigons, we use the following:

Theorem (Hass-Scott Algorithm)

Let C_0 be a configuration with a collection of bigons $\{B_1, \ldots, B_m\}$. Then, for any $i \in [m]$, there exists a sequence of triple point moves and one local bigon move on C_0 that yields a new configuration C_1 such that the collection of bigons of C_1 is $\{B_1, \ldots, B_m\} \setminus \{B_i\}$.

- We must understand behavior of curve QPs under triple point moves and bigon moves. (→ change in quiver and potential)
- We know that Q(C) changes according to quiver mutation under Lagrangian surgery. We must still show that W(C) changes according to the DWZ's QP-mutation. (→ see how polygons change)

Invariance of Curve QPs under planar moves I

Proposition

Let (Q(C), W(C)) be a curve QP associated to C. Then (Q(C), W(C)) is invariant under triple point moves, up to right-equivalence.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

• Right-equivalence: $p_{21} \mapsto p_{21} - p_{23}p_{31}$ and identity for the rest. Then matrices will match, indeed

$$\begin{pmatrix} 0 & p_{21} + p_{23}p_{31} & p_{31} \\ p_{21} & 0 & p_{23} \\ p_{31} & p_{23} & 0 \end{pmatrix}$$

now becomes

$$\begin{pmatrix} 0 & (p_{21} - p_{23}p_{31}) + p_{23}p_{31} & p_{31} \\ (p_{21} - p_{23}p_{31}) & 0 & p_{23} \\ p_{31} & p_{23} & 0 \end{pmatrix} = \begin{pmatrix} 0 & p_{21} & p_{31} \\ p_{21} - p_{23}p_{31} & 0 & p_{23} \\ p_{31} & p_{23} & 0 \end{pmatrix},$$

which is the second matrix we had relabeled, thus concludes first case.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Curve QPs	Proof of Theorem	Questions
೧೧೧೧೧೧	೧೧೧೧೧೧೦೦	୦୦	ດດ
Bigon moves			

Eliminating bigons: Extracting the reduced part

By [DWZ], every (Q, W) breaks into a *trivial* and *reduced* parts: $(Q_{triv}, W_{triv}) \oplus (Q_{red}, W_{red})$. (Intuitively, *trivial* contains 2-cycles seen by W.)

Intro	odu		
	00	00	

Bigon moves

Curve QPs

Proof of Theorem

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Eliminating bigons: Extracting the reduced part

By [DWZ], every (Q, W) breaks into a *trivial* and *reduced* parts: $(Q_{triv}, W_{triv}) \oplus (Q_{red}, W_{red})$. (Intuitively, *trivial* contains 2-cycles seen by W.)

Proposition

Let (Q(C), W(C)) be a curve QP associated to C and C_{red} the result of applying the Hass-Scott algorithm removing all bigons. Then

$$(Q(\mathcal{C}_{red}), W(\mathcal{C}_{red})) = (Q(\mathcal{C})_{red}, W(\mathcal{C})_{red})$$

is the reduced part of $(Q(\mathcal{C}), W(\mathcal{C}))$.

Bigon moves

Curve QPs

Proof of Theorem

Eliminating bigons: Extracting the reduced part

By [DWZ], every (Q, W) breaks into a *trivial* and *reduced* parts: $(Q_{triv}, W_{triv}) \oplus (Q_{red}, W_{red})$. (Intuitively, *trivial* contains 2-cycles seen by W.)

Proposition

Let (Q(C), W(C)) be a curve QP associated to C and C_{red} the result of applying the Hass-Scott algorithm removing all bigons. Then

 $(Q(\mathcal{C}_{red}), W(\mathcal{C}_{red})) = (Q(\mathcal{C})_{red}, W(\mathcal{C})_{red})$

is the reduced part of $(Q(\mathcal{C}), W(\mathcal{C}))$.

Therefore, in the context of curve QP, we know that extracting the reduced part of curve QP is achieved by removing bigons.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Curve QPs under Lagrangian disk surgery

Disk surgery: Inducing QP-mutations

By [DWZ], QP-mutation consists of a quiver mutation without eliminating 2-cycles, a change in W, and then taking the reduced part.

Curve QPs under Lagrangian disk surgery

Disk surgery: Inducing QP-mutations

By [DWZ], QP-mutation consists of a quiver mutation without eliminating 2-cycles, a change in W, and then taking the reduced part.

Proposition

Let (Q(C), W(C)) be a curve QP associated to C and $\gamma \in C$. Then the curve QP associated to the γ -exchange of C is the QP-mutation of (Q(C), W(C)) at γ :

 $(Q(\mu_{\gamma}(\mathcal{C})), W(\mu_{\gamma}(\mathcal{C}))) = (\mu_{\gamma}(Q(\mathcal{C})), \mu_{\gamma}(W(\mathcal{C}))).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Curve QPs under Lagrangian disk surgery

Disk surgery: Inducing QP-mutations

By [DWZ], QP-mutation consists of a quiver mutation without eliminating 2-cycles, a change in W, and then taking the reduced part.

Proposition

Let (Q(C), W(C)) be a curve QP associated to C and $\gamma \in C$. Then the curve QP associated to the γ -exchange of C is the QP-mutation of (Q(C), W(C)) at γ :

 $(Q(\mu_{\gamma}(\mathcal{C})), W(\mu_{\gamma}(\mathcal{C}))) = (\mu_{\gamma}(Q(\mathcal{C})), \mu_{\gamma}(W(\mathcal{C}))).$

Therefore, in the context of curve QP, performing a γ -exchange (e.g. from Lagrangian disk surgery) is a QP-mutation.

ション ふぼう メリン メリン しょうくしゃ

Example of QP-mutation from γ -exchange

Let us work out the change in the quiver in a simple scenario:

The change in polygons in this scenario:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Introduction	Curve QPs	Proof of Theorem	Questions
೧೦೧೧೧೧	0000000000	●O	
Steps for su	rjectivity		

 Construct a filling L and an L-compressing system D such that the associated curve QP (Q(D), W(D)) is non-degenerate.

Non-degeneracy guarantees that no 2-cycles ever appear when mutating $(Q(\mathfrak{D}), W(\mathfrak{D}))$, so you can mutate forever. How is this achieved?

ション ふぼう メリン メリン しょうくしゃ

Introduction	Curve QPs	Proof of Theorem	Questions
000000	0000000000	●○	OO
Steps for su	ırjectivity		

 Construct a filling L and an L-compressing system D such that the associated curve QP (Q(D), W(D)) is non-degenerate.

Non-degeneracy guarantees that no 2-cycles ever appear when mutating $(Q(\mathfrak{D}), W(\mathfrak{D}))$, so you can mutate forever. How is this achieved?

2. The construction uses *conjugate surfaces* associated to plabic fences:

ション ふぼう メリン メリン しょうくしゃ

Introduction	Curve QPs 0000000000	Proof of Theorem ○●	Questions
Steps for surjec	tivity II		

3. Use that *conjugate surface can be made an embedded exact Lagrangian filling* and plabic faces give L-compressing disks. (← *weaves work too*)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Curve QPs	Proof of Theorem	Questions
000000	0000000000	○●	
Steps for surjee	ctivity II		

3. Use that *conjugate surface can be made an embedded exact Lagrangian filling* and plabic faces give L-compressing disks. (← *weaves work too*)

4. Prove that the resulting curve QP is **rigid**, which implies non-degenerate. (Rigid is intuitively that there are no non-trivial infinitesimal deformations: trace space of Jacobian algebra is just the ground ring.)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Curve QPs	Proof of Theorem	Questions
೧೦೧೧೧೧	೧೧೧೧೧೧೧೧೧೧	⊖●	
Steps for surject	tivity II		

3. Use that *conjugate surface can be made an embedded exact Lagrangian filling* and plabic faces give L-compressing disks. (← *weaves work too*)

4. Prove that the resulting curve QP is **rigid**, which implies non-degenerate. (Rigid is intuitively that there are no non-trivial infinitesimal deformations: trace space of Jacobian algebra is just the ground ring.)

This is achieved via induction, using an interesting combinatorial property of these quivers: the rightmost vertex can always be turned into a source/sink via mutations. (\leftarrow triangular extensions)

Introduction 000000	Curve QPs ೧೧೧೧೧೧೧೧೧೧	Proof of Theorem	Questions
A few questions			

1. Injectivity of \mathfrak{C} ? I conjecture yes (open even for the trefoil A_2 -case).

Introduction	Curve QPs	Proof of Theorem	Questions
000000	0000000000		● ೧
A few questions			

- 1. *Injectivity* of \mathfrak{C} ? I conjecture yes (open even for the trefoil A_2 -case).
- Surjectivity of C is proven now: can we prove that every seed comes from a weave? (← Also conjecture yes: see harmonic maps to affine buildings)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Introduction	Curve QPs	Proof of Theorem	Questions
೧೧೧೧೧೧	೧೧೧೧೧೧೧೧೧೧	00	
A few questions			

- 1. Injectivity of \mathfrak{C} ? I conjecture yes (open even for the trefoil A_2 -case).
- Surjectivity of C is proven now: can we prove that every seed comes from a weave? (← Also conjecture yes: see harmonic maps to affine buildings)

ション ふぼう メリン メリン しょうくしゃ

3. *Relating this curve QP* to the CY3 context and *understanding how algebra of this QP* relates to 4D symplectic topology.

Introduction	Curve QPs	Proof of Theorem	Questions
೧೧೧೧೧೧	೧೦೧೧೧೧೧೧೧೧	୦୦	
A few questions			

- 1. *Injectivity* of \mathfrak{C} ? I conjecture yes (open even for the trefoil A_2 -case).
- Surjectivity of C is proven now: can we prove that every seed comes from a weave? (← Also conjecture yes: see harmonic maps to affine buildings)
- 3. *Relating this curve QP* to the CY3 context and *understanding how algebra of this QP* relates to 4D symplectic topology.
- Given a Lagrangian filling L, how many L-compressing system are there for it? Also, how many cluster structures exist on M(Λ_β)?

ション ふぼう メリン メリン しょうくしゃ

Introduction ೧೧೧೧೧೧	Curve QPs ೧೦೧೧೧೧೧೧೧೧	Proof of Theorem	Questions
A few questions			

- 1. *Injectivity* of \mathfrak{C} ? I conjecture yes (open even for the trefoil A_2 -case).
- Surjectivity of C is proven now: can we prove that every seed comes from a weave? (← Also conjecture yes: see harmonic maps to affine buildings)
- 3. *Relating this curve QP* to the CY3 context and *understanding how algebra of this QP* relates to 4D symplectic topology.
- Given a Lagrangian filling L, how many L-compressing system are there for it? Also, how many cluster structures exist on M(Λ_β)?
- Generalize this program for a general Λ. This includes building the right L-compressing systems and understanding what it means for a dg-category (or at least a D⁻-stack) to be a cluster algebra.

Thanks a lot for attending these lectures!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで