Weaves in action

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Cluster algebras and symplectic topology II

Summer School on Cluster Algebras 2023

Roger Casals (UC Davis) August 22nd 2023

Introduction ●OO	Drawing fillings	Weaves in action	Proof of Theorem
Today's focus			

Introduction ●OO	Drawing fillings	Weaves in action	Proof of Theorem
Today's focus			

• Legendrian Λ_{β} associated to positive braid word β via front diagram:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Introduction ●OO	Drawing fillings	Weaves in action	Proof of Theorem
Today's focus			

• Legendrian Λ_{β} associated to positive braid word β via front diagram:

• $\mathfrak{M}(\Lambda_{\beta})$ is smooth affine variety:

$$\left\{ (\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_{l(\beta)} = \mathcal{F}_0) \in (\mathsf{Fl}_m^{aff})^{l(\beta)} : \mathcal{F}_{j-1} \xrightarrow{s_{i_j}} \mathcal{F}_j, \forall j \in [l(\beta)] \right\} / \mathsf{GL}_m(\mathbb{C}).$$

ション ふゆ アメビア メロア しょうくしゃ

Introduction ●OO	Drawing fillings	Weaves in action	Proof of Theorem
Today's focus			

• Legendrian Λ_{β} associated to positive braid word β via front diagram:

• $\mathfrak{M}(\Lambda_{\beta})$ is smooth affine variety:

$$\left\{ (\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_{l(\beta)} = \mathcal{F}_0) \in (\mathsf{Fl}_m^{aff})^{l(\beta)} : \mathcal{F}_{j-1} \xrightarrow{s_{i_j}} \mathcal{F}_j, \forall j \in [l(\beta)] \right\} / \mathsf{GL}_m(\mathbb{C}).$$

• New technique: weaves, a planar diagrammatic calculus to construct and study Lagrangian fillings of Λ_{β} and their L-compressing systems.

Drawing filling

Weaves in action

Proof of Theorem

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Recap of available ingredients

Symplectic geometry behind $\mathfrak{M}(\Lambda)$

Weaves in action

Proof of Theorem

Recap of available ingredients

Symplectic geometry behind $\mathfrak{M}(\Lambda)$

Introduction	Drawing fillings	Weaves in action	Proof of Theorem
Structure of the	proof		

・ロト・日本・ヨト・ヨト・日・ つへぐ

1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L} -compressible system for L: gives an initial seed \mathfrak{s}_{L} . (\leftarrow must verify A_{i} are global regular functions.)

Introduction	Drawing fillings	Weaves in action	Proof of Theorem
Structure of the	proof		

- 1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L} -compressible system for L: gives an initial seed \mathfrak{s}_L . (\leftarrow must verify A_i are global regular functions.)
- 2. Show once mutated $\mu_j(A_i)$ are regular functions on $\mathfrak{M}(\Lambda_\beta)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_L} \subset \mathbb{C}[\mathfrak{M}(\Lambda_\beta)]$. (\leftarrow plus UFD and irreducibility)

Introduction	Drawing fillings	Weaves in action	Proof of Theorem
Structure of the	proof		

- 1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L} -compressible system for L: gives an initial seed \mathfrak{s}_L . (\leftarrow must verify A_i are global regular functions.)
- 2. Show once mutated $\mu_j(A_i)$ are regular functions on $\mathfrak{M}(\Lambda_\beta)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_L} \subset \mathbb{C}[\mathfrak{M}(\Lambda_\beta)]$. (\leftarrow plus UFD and irreducibility)
- 3. Show inclusion $T_L \cup \mu_1(T_L) \cup \ldots \mu_{b_1(L)}(T_L) \subset \mathfrak{M}(\Lambda)$ is an equality up to codimension 2: this gives $\mathbb{C}[\mathfrak{M}(\Lambda_\beta)] = U_{\mathfrak{s}_L}$, the upper cluster algebra.

Introduction OO●	Drawing fillings ೧೦೧೧೧೧	Weaves in action	Proof of Theorem
Structure of the	proof		

- 1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L} -compressible system for L: gives an initial seed \mathfrak{s}_L . (\leftarrow must verify A_i are global regular functions.)
- 2. Show once mutated $\mu_j(A_i)$ are regular functions on $\mathfrak{M}(\Lambda_\beta)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_L} \subset \mathbb{C}[\mathfrak{M}(\Lambda_\beta)]$. (\leftarrow plus UFD and irreducibility)
- 3. Show inclusion $T_L \cup \mu_1(T_L) \cup \ldots \mu_{b_1(L)}(T_L) \subset \mathfrak{M}(\Lambda)$ is an equality up to codimension 2: this gives $\mathbb{C}[\mathfrak{M}(\Lambda_\beta)] = U_{\mathfrak{s}_L}$, the upper cluster algebra.
- 4. Prove $A_{\mathfrak{s}_L} = U_{\mathfrak{s}_L}$, and thus $A_{\mathfrak{s}_L} = \mathbb{C}[\mathfrak{M}(\Lambda_\beta)]$. (\leftarrow local acyclicity)

Alternatively, show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})] \subset A_{\mathfrak{s}_{L}}$ directly by proving generators z_{i} of $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ are all cluster variables. (\leftarrow cyclic rotation is quasi-cluster)

Introduction OOO	Drawing fillings	Weaves in action	Proof of Theorem
Structure of the	proof		

- 1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L} -compressible system for L: gives an initial seed \mathfrak{s}_L . (\leftarrow must verify A_i are global regular functions.)
- 2. Show once mutated $\mu_j(A_i)$ are regular functions on $\mathfrak{M}(\Lambda_\beta)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_L} \subset \mathbb{C}[\mathfrak{M}(\Lambda_\beta)]$. (\leftarrow plus UFD and irreducibility)
- Show inclusion T_L ∪ µ₁(T_L) ∪ ... µ_{b1(L)}(T_L) ⊂ 𝔐(Λ) is an equality up to codimension 2: this gives C[𝔐(Λ_β)] = U_{sL}, the upper cluster algebra.
- 4. Prove $A_{\mathfrak{s}_L} = U_{\mathfrak{s}_L}$, and thus $A_{\mathfrak{s}_L} = \mathbb{C}[\mathfrak{M}(\Lambda_\beta)]$. (\leftarrow local acyclicity)

Alternatively, show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})] \subset A_{\mathfrak{s}_{L}}$ directly by proving generators z_{i} of $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ are all cluster variables. (\leftarrow cyclic rotation is quasi-cluster)

All the steps above are achieved using **weaves**. They provide an explicit setup where sheaf calculations are possible in terms of affine flags.

Introduction OOO	Drawing fillings	Weaves in action	Proof of Theorem
Structure of the	proof		

- 1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L} -compressible system for L: gives an initial seed \mathfrak{s}_L . (\leftarrow must verify A_i are global regular functions.)
- 2. Show once mutated $\mu_j(A_i)$ are regular functions on $\mathfrak{M}(\Lambda_\beta)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_L} \subset \mathbb{C}[\mathfrak{M}(\Lambda_\beta)]$. (\leftarrow plus UFD and irreducibility)
- 3. Show inclusion $T_L \cup \mu_1(T_L) \cup \ldots \mu_{b_1(L)}(T_L) \subset \mathfrak{M}(\Lambda)$ is an equality up to codimension 2: this gives $\mathbb{C}[\mathfrak{M}(\Lambda_\beta)] = U_{\mathfrak{s}_L}$, the upper cluster algebra.
- 4. Prove $A_{\mathfrak{s}_L} = U_{\mathfrak{s}_L}$, and thus $A_{\mathfrak{s}_L} = \mathbb{C}[\mathfrak{M}(\Lambda_\beta)]$. (\leftarrow local acyclicity)

Alternatively, show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})] \subset A_{\mathfrak{s}_{L}}$ directly by proving generators z_{i} of $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ are all cluster variables. (\leftarrow cyclic rotation is quasi-cluster)

All the steps above are achieved using **weaves**. They provide an explicit setup where sheaf calculations are possible in terms of affine flags.

 Caveat: the above is done for the case β = w₀γw₀: general case follows by an additional localization procedure. (← partial L-compressible systems)

Drawing fillings ●00000 Weaves in action

Proof of Theorem

Trading dimensions for singularities

Hope: <u>Draw</u> Lagrangian fillings *L* for Λ_{β} .

Introduction OOO	Drawing fillings ●೧೧೧೧೧	Weaves in action	Proof of Theorem
Trading dimensi	ons for singulari	ties	

Hope: <u>Draw</u> Lagrangian fillings *L* for Λ_{β} .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

• The Legendrian link Λ_{β} is in \mathbb{R}^3 and its front in \mathbb{R}^2 . We can draw 2D. \checkmark

ntroduction ೧೧೧	Drawing fillings ●○○○○○	Weaves in action	Proof of Theorem
Tur din m	dimensione for since	deutstee	

Trading dimensions for singularities

Hope: <u>Draw</u> Lagrangian fillings *L* for Λ_{β} .

ション ふゆ アメビア メロア しょうくしゃ

- The Legendrian link Λ_{β} is in \mathbb{R}^3 and its front in \mathbb{R}^2 . We can draw 2D. \checkmark
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^4 . I cannot draw 4D.

Introduction	Drawing fillings	Weaves in action	Proof of Theorem
೧೧೧	●00000		ରରରର
Trading dir	nensions for singu	Ilarities	

Hope: <u>Draw</u> Lagrangian fillings *L* for Λ_{β} .

- The Legendrian link Λ_{β} is in \mathbb{R}^3 and its front in \mathbb{R}^2 . We can draw 2D. \checkmark
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^4 . I cannot draw 4D.
- Useful trick: consider $z(\ell) = \int_{\ell_0}^{\ell} \lambda_{Liouv} \in \mathbb{R}$: well-defined by exactness. Then *L* is recovered by plotting in $(q_1, q_2, z)|_L$: this is a surface in 3D! \checkmark

ション ふゆ アメビア メロア しょうくしゃ

Introduction 000	Drawing fillings	Weaves in action	Proof of Theorem
ı			

Trading dimensions for singularities

Hope: <u>Draw</u> Lagrangian fillings *L* for Λ_{β} .

- The Legendrian link Λ_{β} is in \mathbb{R}^3 and its front in \mathbb{R}^2 . We can draw 2D. \checkmark
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^4 . I cannot draw 4D.
- Useful trick: consider $z(\ell) = \int_{\ell_0}^{\ell} \lambda_{Liouv} \in \mathbb{R}$: well-defined by exactness. Then *L* is recovered by plotting in $(q_1, q_2, z)|_L$: this is a surface in 3D! \checkmark

ション ふゆ アメビア メロア しょうくしゃ

• Price we pay: it is singular surface in \mathbb{R}^3 .

Trading dimensions for singularities

Hope: <u>Draw</u> Lagrangian fillings *L* for Λ_{β} .

- The Legendrian link Λ_{β} is in \mathbb{R}^3 and its front in \mathbb{R}^2 . We can draw 2D. \checkmark
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^4 . I cannot draw 4D.
- Useful trick: consider $z(\ell) = \int_{\ell_0}^{\ell} \lambda_{Liouv} \in \mathbb{R}$: well-defined by exactness. Then *L* is recovered by plotting in $(q_1, q_2, z)|_L$: this is a surface in 3D! \checkmark
- *Price we pay*: it is **singular surface** in \mathbb{R}^3 .

Good news: these singularities studied by V.I. Arnol'd, N. Varchenko, A.B. Givental A. G. Khovanskii, etc. Book "Singularities of Caustics and Wave Fronts" contains classification in 0- and 1-parameters.

Trading dimensions for singularities

Hope: <u>Draw</u> Lagrangian fillings *L* for Λ_{β} .

- The Legendrian link Λ_{β} is in \mathbb{R}^3 and its front in \mathbb{R}^2 . We can draw 2D. \checkmark
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^4 . I cannot draw 4D.
- Useful trick: consider $z(\ell) = \int_{\ell_0}^{\ell} \lambda_{Liouv} \in \mathbb{R}$: well-defined by exactness. Then *L* is recovered by plotting in $(q_1, q_2, z)|_L$: this is a surface in 3D! \checkmark
- *Price we pay*: it is **singular surface** in \mathbb{R}^3 .

Good news: these singularities studied by V.I. Arnol'd, N. Varchenko, A.B. Givental A. G. Khovanskii, etc. Book "Singularities of Caustics and Wave Fronts" contains classification in 0- and 1-parameters.

Weaves are particular *singular* surfaces in \mathbb{R}^3 , whose singular set can be completely encoded by planar diagrams (plus permutation labels). These planar diagrams are also referred as *weaves* if context is clear.

Introduction	Drawing fillings	Weaves in action	Proof of Theorem
೧೦೧	೧●೧೧೧೧		೧೧೧೧೧
Three important	t singularities I		

Singular surfaces in 3D: wavefront singularities

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Drawing fillings

Weaves in action

Proof of Theorem

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Drawing fillings

Weaves in action

Proof of Theorem

ション ふゆ アメビア メロア しょうくしゃ

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

By definition, a weave is any singular surface in R³ obtained by gluing these three singularities. (← n-weave if we use n sheets above.)
 Their (non-crossing) singular set is codimension-2: D₄⁻ is real part of holomorphic Legendrian singularity. (← quadratic differential z · dz ⊗ dz)

Drawing fillings

Weaves in action

Proof of Theorem

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

By definition, a weave is any singular surface in R³ obtained by gluing these three singularities. (← n-weave if we use n sheets above.)
 Their (non-crossing) singular set is codimension-2: D₄⁻ is real part of holomorphic Legendrian singularity. (← quadratic differential z · dz ⊗ dz)

• Project from above to encode with planar diagrams.

Introduction ೧೦೧	Drawing fillings ೧೧●೧೧೧	Weaves in action	Proof of Theorem
Three important	t singularities II		

Singular surfaces in 3D: wavefront singularities

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 Introduction
 Drawing fillings
 Weaves in action
 Proof of Theorem

 Observed
 Observed
 Observed
 Observed
 Observed

 Three important singularities II
 Important
 Important
 Important
 Important

Singular surfaces in 3D: wavefront singularities

(i) Leads to 3- and 6-valent with edges labeled by simple permutations:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

 Introduction
 Drawing fillings
 Weaves in action
 Proof of Theorem

 Observed
 Observed
 Observed
 Observed
 Observed

 Three important singularities II
 Observed
 Observed
 Observed
 Observed

Singular surfaces in 3D: wavefront singularities

(i) Leads to 3- and 6-valent with edges labeled by simple permutations:

(ii) The label tells us which two sheets are woven. Three edge labels at 3-valent must all coincide, labels at 6-valent alternate s_i and s_{i+1} .

・ロト・日本・日本・日本・日本・日本

 Introduction
 Drawing fillings
 Weaves in action
 Proof of Theorem

 Observed
 Observed
 Observed
 Observed
 Observed

 Three important singularities II
 Observed
 Observed
 Observed
 Observed

Singular surfaces in 3D: wavefront singularities

(i) Leads to 3- and 6-valent with edges labeled by simple permutations:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(ii) The label tells us which two sheets are woven. Three edge labels at 3-valent must all coincide, labels at 6-valent alternate s_i and s_{i+1} .

(iii) **Example**: A 2-weave is just a trivalent graph.

 Introduction
 Drawing fillings
 Weaves in action
 Proof of Theorem

 Observed
 Observed
 Observed
 Observed
 Observed

 Three important singularities II
 Observed
 Observed
 Observed
 Observed

Singular surfaces in 3D: wavefront singularities

(i) Leads to 3- and 6-valent with edges labeled by simple permutations:

ション ふゆ アメビア メロア しょうくしゃ

(ii) The label tells us which two sheets are woven. Three edge labels at 3-valent must all coincide, labels at 6-valent alternate s_i and s_{i+1} .

(iii) **Example**: A 2-weave is just a trivalent graph.

(iv) Fillings of Λ_{β} : β is braid word around boundary.

Introd	
000	

Weaves in action

Proof of Theorem

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

More examples

Intro	du	ictic	٥n
000			

Weaves in action

More examples

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Drawing fillings

Weaves in action

Proof of Theorem

More examples

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Introduction ೧೧೧	Drawing fillings 0000●0	Weaves in action	Proof of Theorem
Constructions:	from known	combinatorics to	weaves

(i) Ideal *n*-triangulation on surface Σ gives *n*-weave on Σ . (\leftarrow Ishibashi's talks)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Constructions: from known combinatorics to weaves

(i) Ideal *n*-triangulation on surface Σ gives *n*-weave on Σ. (← Ishibashi's talks)
(iii) Reduced plabic graph (rk *n*) gives (*n* − 1)-weave on 2-disk. (← T-duality.)

Constructions: from known combinatorics to weaves

(i) Ideal *n*-triangulation on surface Σ gives *n*-weave on Σ. (← Ishibashi's talks)
(iii) Reduced plabic graph (rk *n*) gives (*n* − 1)-weave on 2-disk. (← T-duality.)

(ii) Grid plabic graph on *n*-strands gives (n - 1)-weave.

Introduction ೧೧೧	Drawing fillings	Weaves in action	Proof of Theorem ରର୍ମର୍ବୁ
Restricting to	Demazure weaves		

Weaves can be rather general, to show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra, suffices to use a certain sub-class, called **Demazure** weaves.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Weaves can be rather general, to show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra, suffices to use a certain sub-class, called **Demazure** weaves.

• By definition, a Demazure weave is a weave on the *plane* only using the following local models, exactly as draw (not inverted, no cups or caps):

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

These are $\sigma_i \sigma_{i+1} \sigma_i \rightarrow \sigma_{i+1} \sigma_i \sigma_{i+1}$, $\sigma_i \sigma_k \rightarrow \sigma_k \sigma_i$ and $\sigma_i^2 \rightarrow \sigma_i$.

Weaves can be rather general, to show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra, suffices to use a certain sub-class, called **Demazure** weaves.

• By definition, a Demazure weave is a weave on the *plane* only using the following local models, exactly as draw (not inverted, no cups or caps):

These are $\sigma_i \sigma_{i+1} \sigma_i \rightarrow \sigma_{i+1} \sigma_i \sigma_{i+1}$, $\sigma_i \sigma_k \rightarrow \sigma_k \sigma_i$ and $\sigma_i^2 \rightarrow \sigma_i$.

Embeddedness of L(𝔅) is *freeness* of the weave 𝔅, a combinatorial condition. Demazure weaves are free. (← specific # trivalent & "no faces".)

ション ふぼう メリン メリン しょうくしゃ

Introduction ೧೦೧	Drawing fillings	Weaves in action	Proof of Theorem ೧೧೧೧೧
Restricting to [Demazure weaves		

Weaves can be rather general, to show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra, suffices to use a certain sub-class, called **Demazure** weaves.

• By definition, a Demazure weave is a weave on the *plane* only using the following local models, exactly as draw (not inverted, no cups or caps):

These are $\sigma_i \sigma_{i+1} \sigma_i \rightarrow \sigma_{i+1} \sigma_i \sigma_{i+1}$, $\sigma_i \sigma_k \rightarrow \sigma_k \sigma_i$ and $\sigma_i^2 \rightarrow \sigma_i$.

- Embeddedness of L(𝔅) is *freeness* of the weave 𝔅, a combinatorial condition. Demazure weaves are free. (← specific # trivalent & "no faces".)
- Need appropriate basis for H₁(L, Z), to obtain right quiver and cluster variables: Demazure weaves provide such basis using Demazure cycles.

Introduction	Drawing fillings	Weaves in action ●○○○○○○	Proof of Theorem
Demazure weave	es		

Demazure weaves: encode **spatial fronts** that construct embedded exact Lagrangians. For fillings of Λ_{β} : β **top** & w_0 **bottom**.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Introduction ೧೧೧	Drawing fillings	Weaves in action ●○○○○○○	Proof of Theorem
Demazure weav	es		

Demazure weaves: encode **spatial fronts** that construct embedded exact Lagrangians. For fillings of Λ_{β} : $\frac{\beta \text{ top } \& w_0 \text{ bottom}}{\omega_0}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

(i) Focus on the **RIII concordance** (A_1^3) and the D_4^- **cobordism**.

Introduction OOO	Drawing fillings	Weaves in action ●000000	Proof of Theorem
Demazure weav	es		

Demazure weaves: encode **spatial fronts** that construct embedded exact Lagrangians. For fillings of Λ_{β} : β **top** & w_0 **bottom**.

(i) Focus on the **RIII concordance** (A_1^3) and the D_4^- **cobordism**.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(ii) **Cyclic shift** concordance also useful. In general, given $\beta \in Br_n^+$ with $\delta(\beta) = \Delta$, the **RIII** and D_4^- moves above suffice to bring β to Δ .

Introduction OOO	Drawing fillings	Weaves in action ●000000	Proof of Theorem
Demazure weav	es		

Demazure weaves: encode **spatial fronts** that construct embedded exact Lagrangians. For fillings of Λ_{β} : β **top** & w_0 **bottom**.

(i) Focus on the **RIII concordance** (A_1^3) and the D_4^- **cobordism**.

(ii) **Cyclic shift** concordance also useful. In general, given $\beta \in Br_n^+$ with $\delta(\beta) = \Delta$, the **RIII** and D_4^- moves above suffice to bring β to Δ .

(iii) Produce embedded exact L fillings of Λ_{β} via RIII and D_4^- .

Introduction	Drawing fillings	Weaves in action	Proof of Theorem
OOO		○●○○○○○	೧೧೧೧೧
Example of a we	eave filling		

Example: Consider $\beta = \sigma_1 \sigma_2 \sigma_1^3 \sigma_2 \sigma_1^2 \sigma_2^2 \sigma_1 (\sigma_1 \sigma_2 \sigma_1)$. Then Λ_β is the max-tb T(3, 4). Constructing a Demazure weave for β as follows.

Introduction	Drawing fillings	Weaves in action	Proof of Theorem
೧೧೧	೧೦೧೦೧೦	○●○○○○○	
Example of a we	eave filling		

Example: Consider $\beta = \sigma_1 \sigma_2 \sigma_1^3 \sigma_2 \sigma_1^2 \sigma_2^2 \sigma_1 (\sigma_1 \sigma_2 \sigma_1)$. Then Λ_β is the max-tb T(3, 4). Constructing a Demazure weave for β as follows. A *solution* is

Introduction ດດດ	Drawing fillings	Weaves in action ○●○○○○○	Proof of Theorem
Example of a we	eave filling		

Example: Consider $\beta = \sigma_1 \sigma_2 \sigma_1^3 \sigma_2 \sigma_1^2 \sigma_2^2 \sigma_1 (\sigma_1 \sigma_2 \sigma_1)$. Then Λ_β is the max-tb T(3, 4). Constructing a Demazure weave for β as follows.

 \exists many solutions, typically ∞ 'ly many if cyclic allowed, e.g. two are

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Drawing fillings	Weaves in action	Proof of Theorem
೧೧೧	ດດດດດດ	೧೧●೧೧೧೧	೧೧೧೧೧
Menue calculus	in action		

Example continued: Consider $\beta = \sigma_1 \sigma_2 \sigma_1^3 \sigma_2 \sigma_1^2 \sigma_2^2 \sigma_1 (\sigma_1 \sigma_2 \sigma_1)$ as before. These two Lagrangian fillings differ by a disk surgery:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction	Drawing fillings	Weaves in action	Proof of Theorem
೧೧೧	ດດດດດດ	OO●OOOO	೧೧೧೧೧
Weave calculus	in action		

Example continued: Consider $\beta = \sigma_1 \sigma_2 \sigma_1^3 \sigma_2 \sigma_1^2 \sigma_2^2 \sigma_1 (\sigma_1 \sigma_2 \sigma_1)$ as before.

An \mathbb{L} -compressible system can be built with Y-trees:

Introduction へへへ		Drawing fillings	Weaves in action	Proof of Theorem ೧೧೧೧೧
		-		

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Drawing filling

Weaves in action

Proof of Theorem

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

• Braid word is
$$\beta = \sigma_1^2 \sigma_2^2 \sigma_1^2 \sigma_2^2$$
.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Drawing filling

Weaves in action

Proof of Theorem

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

• Braid word is
$$\beta = \sigma_1^2 \sigma_2^2 \sigma_1^2 \sigma_2^2$$
.

• The weave lines impose *s_i*-transversality of flags.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Drawing fillings

Weaves in action

Proof of Theorem

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

• Braid word is
$$\beta = \sigma_1^2 \sigma_2^2 \sigma_1^2 \sigma_2^2$$
.

- The weave lines impose *s_i*-transversality of flags.
- Flags on top (points in *M*(Λ_β)), give flags inside.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Drawing fillings

Weaves in action

Proof of Theorem

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

• Braid word is
$$\beta = \sigma_1^2 \sigma_2^2 \sigma_1^2 \sigma_2^2$$
.

- The weave lines impose *s_i*-transversality of flags.
- Flags on top (points in *M*(Λ_β)), give flags inside.
- The cluster variables A_i measure transversality of flags along the relative cycle dual to the Lusztig cycle.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 = の々ぐ

Introduction ೧೧೧	Drawing fillings	Weaves in action ○○○○○○○○	Proof of Theorem
Summary	at this stage		

First upshot: For Legendrian links $\Lambda_{\beta} \subset (T_{\infty}^* \mathbb{R}^2, \ker \lambda_{st})$, weaves construct many Lagrangian fillings with \mathbb{L} -compressible systems.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

First upshot: For Legendrian links $\Lambda_{\beta} \subset (T_{\infty}^* \mathbb{R}^2, \ker \lambda_{st})$, weaves construct many Lagrangian fillings with L-compressible systems.

(i) General rules to obtain the right \mathbb{L} -compressible systems for cluster algebras \rightarrow Tropicalization of Lusztig identities for $x_i(t) = \exp(E_i t)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction Drawing fillings Weaves in action Proof of Theorem COOCOC

First upshot: For Legendrian links $\Lambda_{\beta} \subset (\mathcal{T}_{\infty}^* \mathbb{R}^2, \ker \lambda_{st})$, weaves construct many Lagrangian fillings with L-compressible systems.

(i) General rules to obtain the right L-compressible systems for cluster algebras \rightarrow Tropicalization of Lusztig identities for $x_i(t) = \exp(E_i t)$.

ション ふぼう メリン メリン しょうくしゃ

 (ii) Such a filling L and L-compressible system for it give quiver & (candidate) cluster variables. (→ geometric & algebraic descriptions)

First upshot: For Legendrian links $\Lambda_{\beta} \subset (T_{\infty}^* \mathbb{R}^2, \ker \lambda_{st})$, weaves construct many Lagrangian fillings with L-compressible systems.

(i) General rules to obtain the right L-compressible systems for cluster algebras \rightarrow Tropicalization of Lusztig identities for $x_i(t) = \exp(E_i t)$.

 (ii) Such a filling L and L-compressible system for it give quiver & (candidate) cluster variables. (→ geometric & algebraic descriptions)

(iii) Thus, Demazure weave for Λ_{β} gives an initial seed. Even better: the **flag** moduli of the weave gives the toric chart T_L in $\mathfrak{M}(\Lambda_{\beta})$.

	od		
0			

Drawing fillings

Weaves in action

Proof of Theorem

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Lusztig cycles in the weave

Lagrangian disks for an \mathbb{L} -compressing system $\mathfrak{D}(\mathfrak{w})$ for the filling $L = L(\mathfrak{w})$ can be found with these tropical Lusztig rules:

Drawing fillings

Weaves in action

Proof of Theorem

Lusztig cycles in the weave

Lagrangian disks for an \mathbb{L} -compressing system $\mathfrak{D}(\mathfrak{w})$ for the filling $L = L(\mathfrak{w})$ can be found with these tropical Lusztig rules:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Structural result of weaves

Theorem (Framework for Weave Calculus)

Let $\beta \in Br_n^+$ be a braid and \mathfrak{w} a Demazure weave from β to Δ . Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β} . Furthermore:

Structural result of weaves

Theorem (Framework for Weave Calculus)

Let $\beta \in Br_n^+$ be a braid and \mathfrak{w} a Demazure weave from β to Δ . Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β} . Furthermore:

(i) **Equivalences** preserve Hamiltonian isotopy class of $L(\mathfrak{w})$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Structural result of weaves

Theorem (Framework for Weave Calculus)

Let $\beta \in Br_n^+$ be a braid and \mathfrak{w} a Demazure weave from β to Δ . Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β} . Furthermore:

(i) **Equivalences** preserve Hamiltonian isotopy class of $L(\mathfrak{w})$.

(ii) Y-trees in \mathfrak{w} give curves in $L(\mathfrak{w})$ that bound embedded Lagrangian disks in complement of $L(\mathfrak{w})$. ($\rightarrow \mathbb{L}$ -compressible systems)

Structural result of weaves

Theorem (Framework for Weave Calculus)

Let $\beta \in Br_n^+$ be a braid and \mathfrak{w} a Demazure weave from β to Δ . Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β} . Furthermore:

(i) **Equivalences** preserve Hamiltonian isotopy class of $L(\mathfrak{w})$.

(ii) Y-trees in \mathfrak{w} give curves in $L(\mathfrak{w})$ that bound embedded Lagrangian disks in complement of $L(\mathfrak{w})$. ($\rightarrow \mathbb{L}$ -compressible systems)

(iii) Lagrangian disk surgery on Y-cycle realized in weaves by mutations:

Structural result of weaves

Theorem (Framework for Weave Calculus)

Let $\beta \in Br_n^+$ be a braid and \mathfrak{w} a Demazure weave from β to Δ . Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β} . Furthermore:

(i) **Equivalences** preserve Hamiltonian isotopy class of $L(\mathfrak{w})$.

(ii) Y-trees in \mathfrak{w} give curves in $L(\mathfrak{w})$ that bound embedded Lagrangian disks in complement of $L(\mathfrak{w})$. ($\rightarrow \mathbb{L}$ -compressible systems)

(iii) Lagrangian disk surgery on Y-cycle realized in weaves by mutations:

(iv) Any two such weaves with same boundary conditions connected by a sequence of equivalences and mutations.

Introduction ດດດ	Drawing fillings	Weaves in action	Proof of Theorem ●೧೦೧೧
Sketch of tl	ne argument l		

1. Choose initial seed to be left-to-right opening. Then all Lusztig cycles Y-cycles & obtain quiver that can be read from $\Lambda_{w_0\beta w_0}$:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Introduction	Drawing fillings	Weaves in action	Proof of Theorem ●○○○○
Sketch of the ar	gument l		

- Choose initial seed to be left-to-right opening. Then all Lusztig cycles Y-cycles & obtain quiver that can be read from Λ_{w0βw0}:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Introduction ດດດ	Drawing fillings	Weaves in action	Proof of Theorem ●೧೧೧೧
Sketch of th	ne argument l		

- 1. Choose initial seed to be left-to-right opening. Then all Lusztig cycles
 - Y-cycles & obtain quiver that can be read from $\Lambda_{w_0\beta w_0}$:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Introduction ດດດ	Drawing fillings	Weaves in action	Proof of Theorem ●୦୦୦୦
Sketch of th	e argument l		

 Choose initial seed to be left-to-right opening. Then all Lusztig cycles Y-cycles & obtain quiver that can be read from Λ_{wnβWn}:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Sketch of the argument I

1. Choose initial seed to be left-to-right opening. Then all Lusztig cycles Y-cycles & obtain quiver that can be read from $\Lambda_{w_0\beta w_0}$:

2. The cluster variables are the minor giving the transversality of the leftmost flag with each of the other flags. They are microlocal merodromies along relative cycles, dual to the Lusztig cycles. Therefore, they define **global regular functions**.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction Drawing fillings Weaves in action Proof of Theorem COODOOO OF Sketch of the argument II

3. To apply starfish, **first simplify geometrically**. Make all Y-cycles into short cycles via sequence of weaves equivalences:

3. To apply starfish, **first simplify geometrically**. Make all Y-cycles into short cycles via sequence of weaves equivalences:

4. Then apply Lagrangian disk surgeries using weave mutations:

Direct computation then shows that mutated variable is regular: the configuration of flags is such that when the denominator vanishes in the new transversality condition, so does the numerator.

Introduction ೧೧೧	Drawing fillings	Weaves in action	Proof of Theorem ೧೧●೧೧
Sketch of t	he argument III		

5. We have $A_{Q(\mathfrak{w})} \subset \mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ now. To show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})] \subset A_{Q(\mathfrak{w})}$ we prove that there exists a set of generators of $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ – the z_i 's – which are all cluster variables. This uses cyclic rotation.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(A subtlety here is that cyclic rotation is quasi-cluster.)
Introduction ဂဂဂ	Drawing fillings	Weaves in action	Proof of Theorem ୦୦●୦୦
Sketch of t	he argument III		

 We have A_{Q(w)} ⊂ C[M(Λ_β)] now. To show C[M(Λ_β)] ⊂ A_{Q(w)} we prove that there exists a set of generators of C[M(Λ_β)] – the z_i's – which are all cluster variables. This uses cyclic rotation.

(A subtlety here is that cyclic rotation is quasi-cluster.)

6. The case of general Λ_{β} is more complicated. At core, it is deduced from the case $w_0\beta w_0$ by removing crossings: this translates into a interesting localization procedure.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction ೧೧೧	Drawing fillings	Weaves in action	Proof of Theorem
Sketch of the	e argument III		

 We have A_{Q(w)} ⊂ C[M(Λ_β)] now. To show C[M(Λ_β)] ⊂ A_{Q(w)} we prove that there exists a set of generators of C[M(Λ_β)] – the z_i's – which are all cluster variables. This uses cyclic rotation.

(A subtlety here is that cyclic rotation is quasi-cluster.)

- 6. The case of general Λ_{β} is more complicated. At core, it is deduced from the case $w_0\beta w_0$ by removing crossings: this translates into a interesting localization procedure.
- 7. Several details behind the scenes: factoriality of $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$, irreducibility of A_i and codimension-2 argument with non-free weaves.

ション ふぼう メリン メリン しょうくしゃ

Introduction

Drawing fillings

Weaves in action

Proof of Theorem

A last hurrah: a non-Plücker seed with weaves

Here is a simple example for a positroid in Gr(3, 6):

200

Introduction

Proof of Theorem

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Only one lecture to go, and mostly self-contained!

Thanks a lot, see you tomorrow!

