Cluster algebras and symplectic topology II

Summer School on Cluster Algebras 2023

Roger Casals (UC Davis) August 22nd 2023

Today's focus

Goal: Present techniques showing $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ is a cluster algebra.

Today's focus

Goal: Present techniques showing $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ is a cluster algebra.

- Legendrian Λ_{β} associated to positive braid word β via front diagram:

Today's focus

Goal: Present techniques showing $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ is a cluster algebra.

- Legendrian Λ_{β} associated to positive braid word β via front diagram:

- $\mathfrak{M}\left(\Lambda_{\beta}\right)$ is smooth affine variety:

$$
\left\{\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots, \mathcal{F}_{l(\beta)}=\mathcal{F}_{0}\right) \in\left(\mathrm{F}_{m}^{\text {aff }}\right)^{\prime(\beta)}: \mathcal{F}_{j-1} \xrightarrow{s_{j}} \mathcal{F}_{j}, \forall j \in[I(\beta)]\right\} / \mathrm{GL}_{m}(\mathbb{C}) .
$$

Today's focus

Goal: Present techniques showing $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ is a cluster algebra.

- Legendrian Λ_{β} associated to positive braid word β via front diagram:

- $\mathfrak{M}\left(\Lambda_{\beta}\right)$ is smooth affine variety:

$$
\left\{\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots, \mathcal{F}_{I(\beta)}=\mathcal{F}_{0}\right) \in\left(\mathrm{Fl}_{m}^{\text {ff }}\right)^{\prime(\beta)}: \mathcal{F}_{j-1} \xrightarrow{s_{j}} \mathcal{F}_{j}, \forall j \in[I(\beta)]\right\} / \mathrm{GL}_{m}(\mathbb{C}) .
$$

- New technique: weaves, a planar diagrammatic calculus to construct and study Lagrangian fillings of Λ_{β} and their \mathbb{L}-compressing systems.

Recap of available ingredients

Symplectic geometry behind $\mathfrak{M}(\Lambda)$

Recap of available ingredients

Symplectic geometry behind $\mathfrak{M}(\Lambda)$

Legendrian ^

Lagrangian filling L of \wedge \qquad Chart $T_{L} \cong H^{1}\left(L, \mathbb{C}^{*}\right) \subset \mathfrak{M}(\Lambda)$
\mathbb{L}-compressing system \mathfrak{D} for $\mathrm{L} \longrightarrow$
Quiver $Q(\mathfrak{D})$ for T_{L}
Disk $D_{i} \in \mathfrak{D}$

Function $A_{i}: T_{L} \longrightarrow \mathbb{C}^{*}$

Structure of the proof

1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L}-compressible system for L : gives an initial seed $\mathfrak{s} L$. (\leftarrow must verify A_{i} are global regular functions.)

Structure of the proof

1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L}-compressible system for L : gives an initial seed $\mathfrak{s} L$. (\leftarrow must verify A_{i} are global regular functions.)
2. Show once mutated $\mu_{j}\left(A_{i}\right)$ are regular functions on $\mathfrak{M}\left(\Lambda_{\beta}\right)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_{L}} \subset \mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$. (\leftarrow plus UFD and irreducibility)

Structure of the proof

1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L}-compressible system for L : gives an initial seed \mathfrak{s}_{L}. $\left(\leftarrow\right.$ must verify A_{i} are global regular functions.)
2. Show once mutated $\mu_{j}\left(A_{i}\right)$ are regular functions on $\mathfrak{M}\left(\Lambda_{\beta}\right)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_{L}} \subset \mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$. (\leftarrow plus UFD and irreducibility)
3. Show inclusion $T_{L} \cup \mu_{1}\left(T_{L}\right) \cup \ldots \mu_{b_{1}(L)}\left(T_{L}\right) \subset \mathfrak{M}(\Lambda)$ is an equality up to codimension 2: this gives $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]=U_{\mathfrak{s}_{L}}$, the upper cluster algebra.

Structure of the proof

1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L}-compressible system for L : gives an initial seed \mathfrak{s}_{L}. $\left(\leftarrow\right.$ must verify A_{i} are global regular functions.)
2. Show once mutated $\mu_{j}\left(A_{i}\right)$ are regular functions on $\mathfrak{M}\left(\Lambda_{\beta}\right)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_{L}} \subset \mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$. (\leftarrow plus UFD and irreducibility)
3. Show inclusion $T_{L} \cup \mu_{1}\left(T_{L}\right) \cup \ldots \mu_{b_{1}(L)}\left(T_{L}\right) \subset \mathfrak{M}(\Lambda)$ is an equality up to codimension 2: this gives $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]=U_{\mathfrak{s}_{L}}$, the upper cluster algebra.
4. Prove $A_{\mathfrak{s}_{L}}=U_{\mathfrak{s}_{L}}$, and thus $A_{\mathfrak{s}_{L}}=\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$. (\leftarrow local acyclicity $)$ Alternatively, show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right] \subset A_{\mathfrak{s}_{L}}$ directly by proving generators z_{i} of $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ are all cluster variables. (\leftarrow cyclic rotation is quasi-cluster)

Structure of the proof

1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L}-compressible system for L : gives an initial seed \mathfrak{s}_{L}. $\left(\leftarrow\right.$ must verify A_{i} are global regular functions.)
2. Show once mutated $\mu_{j}\left(A_{i}\right)$ are regular functions on $\mathfrak{M}\left(\Lambda_{\beta}\right)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_{L}} \subset \mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$. (\leftarrow plus UFD and irreducibility)
3. Show inclusion $T_{L} \cup \mu_{1}\left(T_{L}\right) \cup \ldots \mu_{b_{1}(L)}\left(T_{L}\right) \subset \mathfrak{M}(\Lambda)$ is an equality up to codimension 2: this gives $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]=U_{\mathfrak{s}_{L}}$, the upper cluster algebra.
4. Prove $A_{\mathfrak{s}_{L}}=U_{\mathfrak{s}_{L}}$, and thus $A_{\mathfrak{s}_{L}}=\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$. (\leftarrow local acyclicity $)$ Alternatively, show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right] \subset A_{\mathfrak{s}_{L}}$ directly by proving generators z_{i} of $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ are all cluster variables. (\leftarrow cyclic rotation is quasi-cluster)

All the steps above are achieved using weaves. They provide an explicit setup where sheaf calculations are possible in terms of affine flags.

Structure of the proof

1. Construct Lagrangian filling L of Λ_{β} and \mathbb{L}-compressible system for L : gives an initial seed \mathfrak{s}_{L}. $\left(\leftarrow\right.$ must verify A_{i} are global regular functions.)
2. Show once mutated $\mu_{j}\left(A_{i}\right)$ are regular functions on $\mathfrak{M}\left(\Lambda_{\beta}\right)$: starfish gives inclusion of cluster algebra $A_{\mathfrak{s}_{L}} \subset \mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$. (\leftarrow plus UFD and irreducibility)
3. Show inclusion $T_{L} \cup \mu_{1}\left(T_{L}\right) \cup \ldots \mu_{b_{1}(L)}\left(T_{L}\right) \subset \mathfrak{M}(\Lambda)$ is an equality up to codimension 2: this gives $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]=U_{\mathfrak{s}_{L}}$, the upper cluster algebra.
4. Prove $A_{\mathfrak{s}_{L}}=U_{\mathfrak{s} L}$, and thus $A_{\mathfrak{s}_{L}}=\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$. $(\leftarrow$ local acyclicity $)$ Alternatively, show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right] \subset A_{\mathfrak{s}_{L}}$ directly by proving generators z_{i} of $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ are all cluster variables. (\leftarrow cyclic rotation is quasi-cluster) All the steps above are achieved using weaves. They provide an explicit setup where sheaf calculations are possible in terms of affine flags.

- Caveat: the above is done for the case $\beta=w_{0} \gamma w_{0}$: general case follows by an additional localization procedure. (\leftarrow partial \mathbb{L}-compressible systems)

Trading dimensions for singularities

Hope: Draw Lagrangian fillings L for Λ_{β}.

Trading dimensions for singularities

Hope: Draw Lagrangian fillings L for Λ_{β}.

- The Legendrian link Λ_{β} is in \mathbb{R}^{3} and its front in \mathbb{R}^{2}. We can draw 2D. \checkmark

Trading dimensions for singularities

Hope: Draw Lagrangian fillings L for Λ_{β}.

- The Legendrian link Λ_{β} is in \mathbb{R}^{3} and its front in \mathbb{R}^{2}. We can draw 2D. \checkmark
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^{4}. I cannot draw 4D.

Trading dimensions for singularities

Hope: Draw Lagrangian fillings L for Λ_{β}.

- The Legendrian link Λ_{β} is in \mathbb{R}^{3} and its front in \mathbb{R}^{2}. We can draw 2D.
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^{4}. I cannot draw 4D.
- Useful trick: consider $z(\ell)=\int_{\ell_{0}}^{\ell} \lambda_{\text {Liouv }} \in \mathbb{R}$: well-defined by exactness. Then L is recovered by plotting in $\left.\left(q_{1}, q_{2}, z\right)\right|_{L}$: this is a surface in 3D! \checkmark

Trading dimensions for singularities

Hope: Draw Lagrangian fillings L for Λ_{β}.

- The Legendrian link Λ_{β} is in \mathbb{R}^{3} and its front in \mathbb{R}^{2}. We can draw 2D.
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^{4}. I cannot draw 4D.
- Useful trick: consider $z(\ell)=\int_{\ell_{0}}^{\ell} \lambda_{\text {Liouv }} \in \mathbb{R}$: well-defined by exactness. Then L is recovered by plotting in $\left.\left(q_{1}, q_{2}, z\right)\right|_{L}$: this is a surface in 3D! \checkmark
- Price we pay: it is singular surface in \mathbb{R}^{3}.

Trading dimensions for singularities

Hope: Draw Lagrangian fillings L for Λ_{β}.

- The Legendrian link Λ_{β} is in \mathbb{R}^{3} and its front in \mathbb{R}^{2}. We can draw 2D.
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^{4}. I cannot draw 4D.
- Useful trick: consider $z(\ell)=\int_{\ell_{0}}^{\ell} \lambda_{\text {Liouv }} \in \mathbb{R}$: well-defined by exactness. Then L is recovered by plotting in $\left.\left(q_{1}, q_{2}, z\right)\right|_{L}$: this is a surface in 3D! \checkmark
- Price we pay: it is singular surface in \mathbb{R}^{3}.

Good news: these singularities studied by V.I. Arnol'd, N. Varchenko, A.B. Givental A. G. Khovanskii, etc. Book "Singularities of Caustics and Wave Fronts" contains classification in 0 - and 1-parameters.

Trading dimensions for singularities

Hope: Draw Lagrangian fillings L for Λ_{β}.

- The Legendrian link Λ_{β} is in \mathbb{R}^{3} and its front in \mathbb{R}^{2}. We can draw 2D.
- Lagrangian fillings L of Λ_{β} are surfaces in \mathbb{R}^{4}. I cannot draw 4D.
- Useful trick: consider $z(\ell)=\int_{\ell_{0}}^{\ell} \lambda_{\text {Liouv }} \in \mathbb{R}$: well-defined by exactness. Then L is recovered by plotting in $\left.\left(q_{1}, q_{2}, z\right)\right|_{L}$: this is a surface in 3D! \checkmark
- Price we pay: it is singular surface in \mathbb{R}^{3}.

Good news: these singularities studied by V.I. Arnol'd, N. Varchenko, A.B. Givental A. G. Khovanskii, etc. Book "Singularities of Caustics and Wave Fronts" contains classification in 0 - and 1-parameters.

Weaves are particular singular surfaces in \mathbb{R}^{3}, whose singular set can be completely encoded by planar diagrams (plus permutation labels). These planar diagrams are also referred as weaves if context is clear.

Three important singularities I

Singular surfaces in 3D: wavefront singularities

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

- By definition, a weave is any singular surface in \mathbb{R}^{3} obtained by gluing these three singularities. ($\leftarrow n$-weave if we use n sheets above.)
Their (non-crossing) singular set is codimension-2: D_{4}^{-}is real part of holomorphic Legendrian singularity. (\leftarrow quadratic differential $z \cdot d z \otimes d z$)

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

- By definition, a weave is any singular surface in \mathbb{R}^{3} obtained by gluing these three singularities. ($\leftarrow n$-weave if we use n sheets above.)
Their (non-crossing) singular set is codimension-2: D_{4}^{-}is real part of holomorphic Legendrian singularity. (\leftarrow quadratic differential $z \cdot d z \otimes d z$)
- Project from above to encode with planar diagrams.

Three important singularities II

Singular surfaces in 3D: wavefront singularities

Three important singularities II

Singular surfaces in 3D: wavefront singularities
(i) Leads to 3 - and 6 -valent with edges labeled by simple permutations:

Three important singularities II

Singular surfaces in 3D: wavefront singularities
(i) Leads to 3 - and 6 -valent with edges labeled by simple permutations:

(ii) The label tells us which two sheets are woven. Three edge labels at 3 -valent must all coincide, labels at 6 -valent alternate s_{i} and s_{i+1}.

Three important singularities II

Singular surfaces in 3D: wavefront singularities
(i) Leads to 3 - and 6 -valent with edges labeled by simple permutations:

(ii) The label tells us which two sheets are woven. Three edge labels at 3 -valent must all coincide, labels at 6 -valent alternate s_{i} and s_{i+1}.
(iii) Example: A 2-weave is just a trivalent graph.

Three important singularities II

Singular surfaces in 3D: wavefront singularities
(i) Leads to 3 - and 6 -valent with edges labeled by simple permutations:

(ii) The label tells us which two sheets are woven. Three edge labels at 3 -valent must all coincide, labels at 6 -valent alternate s_{i} and s_{i+1}.
(iii) Example: A 2-weave is just a trivalent graph.
(iv) Fillings of $\Lambda_{\beta}: \beta$ is braid word around boundary.

More examples

More examples

More examples

Constructions: from known combinatorics to weaves

(i) Ideal n-triangulation on surface Σ gives n-weave on Σ. (\leftarrow Ishibashi's talks)

Constructions: from known combinatorics to weaves

(i) Ideal n-triangulation on surface Σ gives n-weave on Σ. (\leftarrow Ishibashi's talks)
(iii) Reduced plabic graph (rk n) gives ($n-1$)-weave on 2-disk. ($\leftarrow \mathrm{T}$-duality.)

(ii)

Constructions: from known combinatorics to weaves

(i) Ideal n-triangulation on surface Σ gives n-weave on Σ. (\leftarrow Ishibashi's talks)
(iii) Reduced plabic graph (rk n) gives ($n-1$)-weave on 2-disk. ($\leftarrow \mathrm{T}$-duality.)

(ii)

(ii) Grid plabic graph on n-strands gives $(n-1)$-weave.

Restricting to Demazure weaves

Weaves can be rather general, to show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ is a cluster algebra, suffices to use a certain sub-class, called Demazure weaves.

Restricting to Demazure weaves

Weaves can be rather general, to show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ is a cluster algebra, suffices to use a certain sub-class, called Demazure weaves.

- By definition, a Demazure weave is a weave on the plane only using the following local models, exactly as draw (not inverted, no cups or caps):

These are $\sigma_{i} \sigma_{i+1} \sigma_{i} \rightarrow \sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{k} \rightarrow \sigma_{k} \sigma_{i}$ and $\sigma_{i}^{2} \rightarrow \sigma_{i}$.

Restricting to Demazure weaves

Weaves can be rather general, to show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ is a cluster algebra, suffices to use a certain sub-class, called Demazure weaves.

- By definition, a Demazure weave is a weave on the plane only using the following local models, exactly as draw (not inverted, no cups or caps):

These are $\sigma_{i} \sigma_{i+1} \sigma_{i} \rightarrow \sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{k} \rightarrow \sigma_{k} \sigma_{i}$ and $\sigma_{i}^{2} \rightarrow \sigma_{i}$.

- Embeddedness of $L(\mathfrak{w})$ is freeness of the weave \mathfrak{w}, a combinatorial condition. Demazure weaves are free. (\leftarrow specific \# trivalent \& "no faces".)

Restricting to Demazure weaves

Weaves can be rather general, to show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ is a cluster algebra, suffices to use a certain sub-class, called Demazure weaves.

- By definition, a Demazure weave is a weave on the plane only using the following local models, exactly as draw (not inverted, no cups or caps):

These are $\sigma_{i} \sigma_{i+1} \sigma_{i} \rightarrow \sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{k} \rightarrow \sigma_{k} \sigma_{i}$ and $\sigma_{i}^{2} \rightarrow \sigma_{i}$.

- Embeddedness of $L(\mathfrak{w})$ is freeness of the weave \mathfrak{w}, a combinatorial condition. Demazure weaves are free. (\leftarrow specific \# trivalent \& "no faces".)
- Need appropriate basis for $H_{1}(L, \mathbb{Z})$, to obtain right quiver and cluster variables: Demazure weaves provide such basis using Demazure cycles.

Demazure weaves

Demazure weaves: encode spatial fronts that construct embedded exact Lagrangians. For fillings of $\Lambda_{\beta}: \underline{\beta}$ top \& w_{0} bottom.

Demazure weaves

Demazure weaves: encode spatial fronts that construct embedded exact Lagrangians. For fillings of $\Lambda_{\beta}: \underline{\beta}$ top \& w_{0} bottom.
(i) Focus on the RIII concordance $\left(A_{1}^{3}\right)$ and the D_{4}^{-}cobordism.

Demazure weaves

Demazure weaves: encode spatial fronts that construct embedded exact Lagrangians. For fillings of Λ_{β} : $\underline{\beta \text { top } \& w_{0} \text { bottom. }}$
(i) Focus on the RIII concordance $\left(A_{1}^{3}\right)$ and the D_{4}^{-}cobordism.

(ii) Cyclic shift concordance also useful. In general, given $\beta \in \mathrm{Br}_{n}^{+}$with $\delta(\beta)=\Delta$, the RIII and D_{4}^{-}moves above suffice to bring β to Δ.

Demazure weaves

Demazure weaves: encode spatial fronts that construct embedded exact Lagrangians. For fillings of $\Lambda_{\beta}: \underline{\beta}$ top \& w_{0} bottom.
(i) Focus on the RIII concordance $\left(A_{1}^{3}\right)$ and the D_{4}^{-}cobordism.

(ii) Cyclic shift concordance also useful. In general, given $\beta \in \mathrm{Br}_{n}^{+}$with $\delta(\beta)=\Delta$, the RIII and D_{4}^{-}moves above suffice to bring β to Δ.
(iii) Produce embedded exact L fillings of Λ_{β} via $R I I I$ and D_{4}^{-}.

Example of a weave filling

Example: Consider $\beta=\sigma_{1} \sigma_{2} \sigma_{1}^{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)$. Then Λ_{β} is the max-tb $T(3,4)$. Constructing a Demazure weave for β as follows.

Example of a weave filling

Example: Consider $\beta=\sigma_{1} \sigma_{2} \sigma_{1}^{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)$. Then Λ_{β} is the max-tb $T(3,4)$. Constructing a Demazure weave for β as follows.

A solution is

Example of a weave filling

Example: Consider $\beta=\sigma_{1} \sigma_{2} \sigma_{1}^{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)$. Then Λ_{β} is the max-tb $T(3,4)$. Constructing a Demazure weave for β as follows.
\exists many solutions, typically ∞^{\prime} ly many if cyclic allowed, e.g. two are

Weave calculus in action

Example continued: Consider $\beta=\sigma_{1} \sigma_{2} \sigma_{1}^{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)$ as before.
These two Lagrangian fillings differ by a disk surgery:

Weave calculus in action

Example continued: Consider $\beta=\sigma_{1} \sigma_{2} \sigma_{1}^{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)$ as before.
An \mathbb{L}-compressible system can be built with Y-trees:

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

- Braid word is $\beta=\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{2} \sigma_{2}^{2}$.

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

- Braid word is $\beta=\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{2} \sigma_{2}^{2}$.
- The weave lines impose s_{i}-transversality of flags.

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

- Braid word is $\beta=\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{2} \sigma_{2}^{2}$.
- The weave lines impose s_{i}-transversality of flags.
- Flags on top (points in $\mathfrak{M}\left(\Lambda_{\beta}\right)$), give flags inside.

The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

- Braid word is $\beta=\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{1}^{2} \sigma_{2}^{2}$.
- The weave lines impose s_{i}-transversality of flags.
- Flags on top (points in $\mathfrak{M}\left(\Lambda_{\beta}\right)$), give flags inside.
- The cluster variables A_{i} measure transversality of flags along the relative cycle dual to the Lusztig cycle.

Summary at this stage

First upshot: For Legendrian links $\Lambda_{\beta} \subset\left(T_{\infty}^{*} \mathbb{R}^{2}\right.$, ker $\left.\lambda_{\text {st }}\right)$, weaves construct many Lagrangian fillings with \mathbb{L}-compressible systems.

Summary at this stage

First upshot: For Legendrian links $\Lambda_{\beta} \subset\left(T_{\infty}^{*} \mathbb{R}^{2}\right.$, ker $\left.\lambda_{\mathrm{st}}\right)$, weaves construct many Lagrangian fillings with \mathbb{L}-compressible systems.
(i) General rules to obtain the right \mathbb{L}-compressible systems for cluster algebras \rightarrow Tropicalization of Lusztig identities for $x_{i}(t)=\exp \left(E_{i} t\right)$.

Summary at this stage

First upshot: For Legendrian links $\Lambda_{\beta} \subset\left(T_{\infty}^{*} \mathbb{R}^{2}\right.$, ker $\left.\lambda_{\mathrm{st}}\right)$, weaves construct many Lagrangian fillings with \mathbb{L}-compressible systems.
(i) General rules to obtain the right \mathbb{L}-compressible systems for cluster algebras \rightarrow Tropicalization of Lusztig identities for $x_{i}(t)=\exp \left(E_{i} t\right)$.

(ii) Such a filling L and \mathbb{L}-compressible system for it give quiver \& (candidate) cluster variables. (\rightarrow geometric \& algebraic descriptions)

Summary at this stage

First upshot: For Legendrian links $\Lambda_{\beta} \subset\left(T_{\infty}^{*} \mathbb{R}^{2}\right.$, ker $\left.\lambda_{\text {st }}\right)$, weaves construct many Lagrangian fillings with \mathbb{L}-compressible systems.
(i) General rules to obtain the right \mathbb{L}-compressible systems for cluster algebras \rightarrow Tropicalization of Lusztig identities for $x_{i}(t)=\exp \left(E_{i} t\right)$.

(ii) Such a filling L and \mathbb{L}-compressible system for it give quiver \& (candidate) cluster variables. (\rightarrow geometric \& algebraic descriptions)
(iii) Thus, Demazure weave for Λ_{β} gives an initial seed. Even better: the flag moduli of the weave gives the toric chart T_{L} in $\mathfrak{M}\left(\Lambda_{\beta}\right)$.

Lusztig cycles in the weave

Lagrangian disks for an \mathbb{L}-compressing system $\mathfrak{D}(\mathfrak{w})$ for the filling $L=L(\mathfrak{w})$ can be found with these tropical Lusztig rules:

Lusztig cycles in the weave

Lagrangian disks for an \mathbb{L}-compressing system $\mathfrak{D}(\mathfrak{w})$ for the filling $L=L(\mathfrak{w})$ can be found with these tropical Lusztig rules:

Structural result of weaves

Theorem (Framework for Weave Calculus)
Let $\beta \in \mathrm{Br}_{n}^{+}$be a braid and \mathfrak{w} a Demazure weave from β to Δ. Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β}. Furthermore:

Structural result of weaves

Theorem (Framework for Weave Calculus)
Let $\beta \in \mathrm{Br}_{n}^{+}$be a braid and \mathfrak{w} a Demazure weave from β to Δ. Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β}. Furthermore:
(i) Equivalences preserve Hamiltonian isotopy class of $L(\mathfrak{w})$.

Structural result of weaves

Theorem (Framework for Weave Calculus)

Let $\beta \in \mathrm{Br}_{n}^{+}$be a braid and \mathfrak{w} a Demazure weave from β to Δ. Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β}. Furthermore:
(i) Equivalences preserve Hamiltonian isotopy class of $L(\mathfrak{w})$.
(ii) Y-trees in \mathfrak{w} give curves in $L(\mathfrak{w)}$ that bound embedded Lagrangian disks in complement of $L(\mathfrak{w})$. ($\rightarrow \mathbb{L}$-compressible systems)

Structural result of weaves

Theorem (Framework for Weave Calculus)

Let $\beta \in \mathrm{Br}_{n}^{+}$be a braid and \mathfrak{w} a Demazure weave from β to Δ. Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β}. Furthermore:
(i) Equivalences preserve Hamiltonian isotopy class of $L(\mathfrak{w})$.
(ii) Y-trees in \mathfrak{w} give curves in $L(\mathfrak{w})$ that bound embedded Lagrangian disks in complement of $L(\mathfrak{w})$. ($\rightarrow \mathbb{L}$-compressible systems)
(iii) Lagrangian disk surgery on Y -cycle realized in weaves by mutations:

\longleftrightarrow

Structural result of weaves

Theorem (Framework for Weave Calculus)

Let $\beta \in \mathrm{Br}_{n}^{+}$be a braid and \mathfrak{w} a Demazure weave from β to Δ. Then \mathfrak{w} defines an exact Lagrangian filling $L(\mathfrak{w})$ of Λ_{β}. Furthermore:
(i) Equivalences preserve Hamiltonian isotopy class of $L(\mathfrak{w})$.
(ii) Y-trees in \mathfrak{w} give curves in $L(\mathfrak{w})$ that bound embedded Lagrangian disks in complement of $L(\mathfrak{w})$. ($\rightarrow \mathbb{L}$-compressible systems)
(iii) Lagrangian disk surgery on Y -cycle realized in weaves by mutations:

(iv) Any two such weaves with same boundary conditions connected by a sequence of equivalences and mutations.

Sketch of the argument I

1. Choose initial seed to be left-to-right opening. Then all Lusztig cycles Y-cycles \& obtain quiver that can be read from $\Lambda_{w_{0}} \beta w_{0}$:

Sketch of the argument I

1. Choose initial seed to be left-to-right opening. Then all Lusztig cycles Y-cycles \& obtain quiver that can be read from $\Lambda_{w_{0} \beta w_{0}}$:

Sketch of the argument I

1. Choose initial seed to be left-to-right opening. Then all Lusztig cycles Y-cycles \& obtain quiver that can be read from $\Lambda_{w_{0} \beta w_{0}}$:

Sketch of the argument I

1. Choose initial seed to be left-to-right opening. Then all Lusztig cycles Y-cycles \& obtain quiver that can be read from $\Lambda_{w_{0}} \beta w_{0}$:

Sketch of the argument I

1. Choose initial seed to be left-to-right opening. Then all Lusztig cycles Y-cycles \& obtain quiver that can be read from $\Lambda_{w_{0} \beta w_{0}}$:

2. The cluster variables are the minor giving the transversality of the leftmost flag with each of the other flags. They are microlocal merodromies along relative cycles, dual to the Lusztig cycles. Therefore, they define global regular functions.

Sketch of the argument II

3. To apply starfish, first simplify geometrically. Make all Y-cycles into short cycles via sequence of weaves equivalences:

Sketch of the argument II

3. To apply starfish, first simplify geometrically. Make all Y-cycles into short cycles via sequence of weaves equivalences:

4. Then apply Lagrangian disk surgeries using weave mutations:

Direct computation then shows that mutated variable is regular: the configuration of flags is such that when the denominator vanishes in the new transversality condition, so does the numerator.

Sketch of the argument III

5. We have $A_{Q(\mathfrak{w})} \subset \mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ now. To show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right] \subset A_{Q(\mathfrak{w})}$ we prove that there exists a set of generators of $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ - the z_{i} 's - which are all cluster variables. This uses cyclic rotation.
(A subtlety here is that cyclic rotation is quasi-cluster.)

Sketch of the argument III

5. We have $A_{Q(\mathfrak{w})} \subset \mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ now. To show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right] \subset A_{Q(\mathfrak{w})}$ we prove that there exists a set of generators of $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ - the z_{i} 's - which are all cluster variables. This uses cyclic rotation.
(A subtlety here is that cyclic rotation is quasi-cluster.)
6. The case of general Λ_{β} is more complicated. At core, it is deduced from the case $w_{0} \beta w_{0}$ by removing crossings: this translates into a interesting localization procedure.

Sketch of the argument III

5. We have $A_{Q(\mathfrak{w})} \subset \mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ now. To show $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right] \subset A_{Q(\mathfrak{w})}$ we prove that there exists a set of generators of $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$ - the z_{i} 's - which are all cluster variables. This uses cyclic rotation.
(A subtlety here is that cyclic rotation is quasi-cluster.)
6. The case of general Λ_{β} is more complicated. At core, it is deduced from the case $w_{0} \beta w_{0}$ by removing crossings: this translates into a interesting localization procedure.
7. Several details behind the scenes: factoriality of $\mathbb{C}\left[\mathfrak{M}\left(\Lambda_{\beta}\right)\right]$, irreducibility of A_{i} and codimension-2 argument with non-free weaves.

A last hurrah: a non-Plücker seed with weaves

Here is a simple example for a positroid in $\operatorname{Gr}(3,6)$:

No plabic graph represents that seed
weave for seed given by mutation at non-square face F

Only one lecture to go, and mostly self-contained!

Thanks a lot, see you tomorrow!

