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Introduction Drawing fillings Weaves in action Proof of Theorem

Today’s focus

Goal: Present techniques showing C[M(Λβ)] is a cluster algebra.

Legendrian Λβ associated to positive braid word β via front diagram:

M(Λβ) is smooth affine variety:{
(F0,F1, . . . ,Fl(β) = F0) ∈ (Flaff

m )l(β) : Fj−1

sij−→ Fj ,∀j ∈ [l(β)]

}
/GLm(C).

New technique: weaves, a planar diagrammatic calculus to construct
and study Lagrangian fillings of Λβ and their L-compressing systems.
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Recap of available ingredients

Symplectic geometry behind M(Λ)

Legendrian Λ −−−−−−−−−−−−→ Moduli space M(Λ)

Lagrangian filling L of Λ −−−−→ Chart TL
∼= H1(L,C∗) ⊂M(Λ)

L-compressing system D for L−−→ Quiver Q(D) for TL

Disk Di ∈ D −−−−−−−−−−−−−→ Function Ai : TL −→ C∗
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Structure of the proof

1. Construct Lagrangian filling L of Λβ and L-compressible system for L:
gives an initial seed sL. (← must verify Ai are global regular functions.)

2. Show once mutated µj (Ai ) are regular functions on M(Λβ): starfish gives
inclusion of cluster algebra AsL

⊂ C[M(Λβ)]. (← plus UFD and irreducibility)

3. Show inclusion TL ∪ µ1(TL) ∪ . . . µb1(L)(TL) ⊂M(Λ) is an equality up to
codimension 2: this gives C[M(Λβ)] = UsL

, the upper cluster algebra.

4. Prove AsL
= UsL

, and thus AsL
= C[M(Λβ)]. (← local acyclicity)

Alternatively, show C[M(Λβ)] ⊂ AsL
directly by proving generators zi of

C[M(Λβ)] are all cluster variables. (← cyclic rotation is quasi-cluster)

All the steps above are achieved using weaves. They provide an explicit
setup where sheaf calculations are possible in terms of affine flags.

Caveat: the above is done for the case β = w0γw0: general case follows
by an additional localization procedure. (← partial L-compressible systems)
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Trading dimensions for singularities

Hope: Draw Lagrangian fillings L for Λβ .

The Legendrian link Λβ is in R3 and its front in R2. We can draw 2D. X

Lagrangian fillings L of Λβ are surfaces in R4. I cannot draw 4D.

Useful trick: consider z(`) =
∫ `
`0
λLiouv ∈ R: well-defined by exactness.

Then L is recovered by plotting in (q1, q2, z)|L: this is a surface in 3D! X

Price we pay: it is singular surface in R3.

Good news: these singularities studied by V.I. Arnol’d, N. Varchenko,
A.B. Givental A. G. Khovanskii, etc. Book “Singularities of Caustics and
Wave Fronts” contains classification in 0- and 1-parameters.

Weaves are particular singular surfaces in R3, whose singular set can be
completely encoded by planar diagrams (plus permutation labels). These
planar diagrams are also referred as weaves if context is clear.
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Introduction Drawing fillings Weaves in action Proof of Theorem

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

By definition, a weave is any singular surface in R3 obtained by gluing
these three singularities. (← n-weave if we use n sheets above.)

Their (non-crossing) singular set is codimension-2: D−4 is real part of
holomorphic Legendrian singularity. (← quadratic differential z · dz ⊗ dz)

Project from above to encode with planar diagrams.



Introduction Drawing fillings Weaves in action Proof of Theorem

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

By definition, a weave is any singular surface in R3 obtained by gluing
these three singularities. (← n-weave if we use n sheets above.)

Their (non-crossing) singular set is codimension-2: D−4 is real part of
holomorphic Legendrian singularity. (← quadratic differential z · dz ⊗ dz)

Project from above to encode with planar diagrams.



Introduction Drawing fillings Weaves in action Proof of Theorem

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

By definition, a weave is any singular surface in R3 obtained by gluing
these three singularities. (← n-weave if we use n sheets above.)

Their (non-crossing) singular set is codimension-2: D−4 is real part of
holomorphic Legendrian singularity. (← quadratic differential z · dz ⊗ dz)

Project from above to encode with planar diagrams.



Introduction Drawing fillings Weaves in action Proof of Theorem

Three important singularities I

Singular surfaces in 3D: wavefront singularities

We only draw fronts with these three singularities:

By definition, a weave is any singular surface in R3 obtained by gluing
these three singularities. (← n-weave if we use n sheets above.)

Their (non-crossing) singular set is codimension-2: D−4 is real part of
holomorphic Legendrian singularity. (← quadratic differential z · dz ⊗ dz)

Project from above to encode with planar diagrams.



Introduction Drawing fillings Weaves in action Proof of Theorem

Three important singularities II

Singular surfaces in 3D: wavefront singularities

(i) Leads to 3- and 6-valent with edges labeled by simple permutations:

(ii) The label tells us which two sheets are woven. Three edge labels at
3-valent must all coincide, labels at 6-valent alternate si and si+1.

(iii) Example: A 2-weave is just a trivalent graph.

(iv) Fillings of Λβ : β is braid word around boundary.
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Constructions: from known combinatorics to weaves

(i) Ideal n-triangulation on surface Σ gives n-weave on Σ. (← Ishibashi’s talks)

(iii) Reduced plabic graph (rk n) gives (n − 1)-weave on 2-disk. (← T-duality.)

(ii) Grid plabic graph on n-strands gives (n − 1)-weave.
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Restricting to Demazure weaves

Weaves can be rather general, to show C[M(Λβ)] is a cluster algebra,
suffices to use a certain sub-class, called Demazure weaves.

By definition, a Demazure weave is a weave on the plane only using the
following local models, exactly as draw (not inverted, no cups or caps):

These are σiσi+1σi → σi+1σiσi+1, σiσk → σkσi and σ2
i → σi .

Embeddedness of L(w) is freeness of the weave w, a combinatorial
condition. Demazure weaves are free. (← specific # trivalent & “no faces”.)

Need appropriate basis for H1(L,Z), to obtain right quiver and cluster
variables: Demazure weaves provide such basis using Demazure cycles.
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variables: Demazure weaves provide such basis using Demazure cycles.
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Demazure weaves

Demazure weaves: encode spatial fronts that construct embedded
exact Lagrangians. For fillings of Λβ : β top & w0 bottom.

(i) Focus on the RIII concordance (A3
1) and the D−4 cobordism.

(ii) Cyclic shift concordance also useful. In general, given β ∈ Br+
n with

δ(β) = ∆, the RIII and D−4 moves above suffice to bring β to ∆.

(iii) Produce embedded exact L fillings of Λβ via RIII and D−4 .
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Example of a weave filling

Example: Consider β = σ1σ2σ
3
1σ2σ

2
1σ

2
2σ1(σ1σ2σ1). Then Λβ is the

max-tb T (3, 4). Constructing a Demazure weave for β as follows.

A solution is

∃ many solutions, typically ∞’ly many if cyclic allowed, e.g. two are
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Weave calculus in action

Example continued: Consider β = σ1σ2σ
3
1σ2σ

2
1σ

2
2σ1(σ1σ2σ1) as before.

These two Lagrangian fillings differ by a disk surgery:

An L-compressible system can be built with Y-trees:
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The toric chart from a weave

In practice, sheaf quantization of L through its weave goes as follows:

Braid word is β = σ2
1σ

2
2σ

2
1σ

2
2 .

The weave lines impose
si -transversality of flags.

Flags on top (points in
M(Λβ)), give flags inside.

The cluster variables Ai

measure transversality of
flags along the relative cycle
dual to the Lusztig cycle.
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Summary at this stage

First upshot: For Legendrian links Λβ ⊂ (T ∗∞R2, ker λst), weaves
construct many Lagrangian fillings with L-compressible systems.

(i) General rules to obtain the right L-compressible systems for cluster
algebras → Tropicalization of Lusztig identities for xi (t) = exp(Ei t).

(ii) Such a filling L and L-compressible system for it give quiver &
(candidate) cluster variables. (→ geometric & algebraic descriptions)

(iii) Thus, Demazure weave for Λβ gives an initial seed. Even better: the flag
moduli of the weave gives the toric chart TL in M(Λβ).
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Lusztig cycles in the weave

Lagrangian disks for an L-compressing system D(w) for the filling
L = L(w) can be found with these tropical Lusztig rules:
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Structural result of weaves

Theorem (Framework for Weave Calculus)

Let β ∈ Br+
n be a braid and w a Demazure weave from β to ∆. Then w

defines an exact Lagrangian filling L(w) of Λβ . Furthermore:

(i) Equivalences preserve Hamiltonian isotopy class of L(w).

(ii) Y-trees in w give curves in L(w) that bound embedded Lagrangian disks
in complement of L(w). (→ L-compressible systems)

(iii) Lagrangian disk surgery on Y-cycle realized in weaves by mutations:

(iv) Any two such weaves with same boundary conditions connected by a
sequence of equivalences and mutations.
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Sketch of the argument I

1. Choose initial seed to be left-to-right opening. Then all Lusztig cycles
Y-cycles & obtain quiver that can be read from Λw0βw0 :

•

•
•
•

•
•
• •

•
•

2. The cluster variables are the minor giving the transversality of the
leftmost flag with each of the other flags. They are microlocal
merodromies along relative cycles, dual to the Lusztig cycles.
Therefore, they define global regular functions.
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Sketch of the argument II

3. To apply starfish, first simplify geometrically. Make all Y-cycles into
short cycles via sequence of weaves equivalences:

∼ ∼

4. Then apply Lagrangian disk surgeries using weave mutations:

←→

Direct computation then shows that mutated variable is regular: the
configuration of flags is such that when the denominator vanishes in the
new transversality condition, so does the numerator.
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Sketch of the argument III

5. We have AQ(w) ⊂ C[M(Λβ)] now. To show C[M(Λβ)] ⊂ AQ(w) we prove
that there exists a set of generators of C[M(Λβ)] – the zi ’s – which are
all cluster variables. This uses cyclic rotation.

(A subtlety here is that cyclic rotation is quasi-cluster.)

6. The case of general Λβ is more complicated. At core, it is deduced from
the case w0βw0 by removing crossings: this translates into a interesting
localization procedure.

7. Several details behind the scenes: factoriality of C[M(Λβ)], irreducibility
of Ai and codimension-2 argument with non-free weaves. �



Introduction Drawing fillings Weaves in action Proof of Theorem

Sketch of the argument III

5. We have AQ(w) ⊂ C[M(Λβ)] now. To show C[M(Λβ)] ⊂ AQ(w) we prove
that there exists a set of generators of C[M(Λβ)] – the zi ’s – which are
all cluster variables. This uses cyclic rotation.

(A subtlety here is that cyclic rotation is quasi-cluster.)

6. The case of general Λβ is more complicated. At core, it is deduced from
the case w0βw0 by removing crossings: this translates into a interesting
localization procedure.

7. Several details behind the scenes: factoriality of C[M(Λβ)], irreducibility
of Ai and codimension-2 argument with non-free weaves. �



Introduction Drawing fillings Weaves in action Proof of Theorem

Sketch of the argument III

5. We have AQ(w) ⊂ C[M(Λβ)] now. To show C[M(Λβ)] ⊂ AQ(w) we prove
that there exists a set of generators of C[M(Λβ)] – the zi ’s – which are
all cluster variables. This uses cyclic rotation.

(A subtlety here is that cyclic rotation is quasi-cluster.)

6. The case of general Λβ is more complicated. At core, it is deduced from
the case w0βw0 by removing crossings: this translates into a interesting
localization procedure.

7. Several details behind the scenes: factoriality of C[M(Λβ)], irreducibility
of Ai and codimension-2 argument with non-free weaves. �



Introduction Drawing fillings Weaves in action Proof of Theorem

A last hurrah: a non-Plücker seed with weaves

Here is a simple example for a positroid in Gr(3, 6):
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Only one lecture to go, and mostly self-contained!

Thanks a lot, see you tomorrow!
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