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‘Goal: Explain how cluster algebras arise in 4D symplectic topology.

o Lecture 1: Introduction to the program, with Legendrian links A and
their sheaf moduli 9(A). Survey of applications and developments.

o Lecture 2: Show C[9t(Ag)] is a cluster algebra. (+ technique: weaves)

o Lecture 3: The map Lag®(Ag) — Seed(M(Ag)) surjects. (+ QPs)
Intuitively, all cluster seeds arise from Lagrangians.

These techniques solve problems, plus new questions and connections!
(Core references: 2308.00043,2207.11607,2204.13244,2007.04943)

@ B. An, Y. Bae, I. Le, W. Li, H. Gao, E. Gorsky, M. Gorsky, J. Hughes, E. Lee, A. Roy,
J. Simental, L. Shen, M. Sherman-Bennett, D. Treumann, D. Weng, E. Zaslow. ..
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’Theme: use the interaction of Lagrangian surfaces with cluster algebras‘

(i) New results in symplectic topology.
o Construct co'ly many Hamiltonian isotopy classes of Lagrangian surfaces.
(geometric compact generators and hearts in 4D wrapped Fukaya cat.)
o Insights into exact Lagrangian fillings. (— Conjectural ADE classification)
o Holomorphic symplectic structures on moduli 9(Ag), CY structures, etc.
(i) New results in cluster algebras.
Cluster structures on Richardson varieties. (4 braid varieties, any Lie type)

o Construction and properties of Donaldson-Thomas transformations (DT).
E.g. prove Muller-Speyer twist equals DT (= target =" source)

o Accessing seeds combinatorially via weaves, including non-Pliicker seeds.

o New quiver with potential based on curves in surfaces. (+ rigid)

Weaves also used in spectral networks, in higher dimensional contact topology,
e.g. Lagrangian concordances, doubling, and more.
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Today: A 4D symplectic topology problem

‘ Helpful mindset: Work on geometry, extract algebra ‘

(i) Geometric problem: study Lagrangian fillings of Legendrian links .
(Filling is surface in (D* ws), link is in 3-sphere boundary S3 = 9D*.)
o E.g. classification of Legendrian links, up to contact isotopy?
Classification of Lagrangian fillings, up to Hamiltonian isotopy?

(i) Extract algebra: microlocal theory of sheaves in R? from Legendrian A.
(~ dg-category €(A) and moduli space D(A) are invariants of A.)

o How do you effectively compute this dg-category? (« objects, morphisms)
o How much do €(A), 9(A) know about A and its fillings?

Please ask questions throughout so that we can all learn. Thanks!
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Legendrian links | (ambiently: 4D inside, 3D boundary)

B1.

B2.

; 2 ; 2 _ 2 2
Consider Ry . and its 4D cotangent bundle T*R* =Ry xRy .

. Liouville 1-form Apjouy := p1dqs + podgs and wg := d Aoy, is symplectic.

Symplectic is dw = 0 & w? # 0. See sp: diff. geom. of anti-symmetric.

. L C T*R? exact Lagrangian if Apjouy|r €xact. (« same as Hamiltonian iso.)

Exact Lagrangians must be non-compact, i.e. 9L # 0.

Restriction of Azjou to 3D unit cotangent T%R? := {|p| = 1} is contact.
(Contact is 1 of 3 geometries of non-zero distributions, with dynamics & Engel.)

A C TAR? link is Legendrian if TA C ker{ALiouv|Tx R2}-

(Legendrians A are a good boundary condition for exact Lagrangians L: think A = 9L.)
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Legendrian links Il (in practice)

Legendrian links A C T R? are recovered by projection 7(A) to RZ .

(i) Fronts for Legendrian links <+ planar immersed curves with cusps:

Legendrian front

Important example: any positive braid word 3 defines Ay C T% R2.
(i) A1, A2 Legendrian isotopic <> fronts equal via Leg. Reidemeister moves.
(iii) 3 A1, Az smoothly* equal but not Legendrian isotopic. (E.g. Ag,,Ag,.)

(iv) Any front stratifies plane R?: partition into 0, 1, 2-dimensional pieces.
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Lagrangian Fillings of Legendrian links

’Symplectic Geometry: Study Lagrangian fillings of Legendrian Iinks‘

1. Consider a Legendrian link A C (T%R?, &) = (R? x S}, ker(d6 — ydx)).
Cotangent bundle T*R? with \jou 1= p1dq1 + p2dqa, (g1, q2) base, (p1, p2) fiber.

2. Study embedded exact Lagrangian surfaces L C T*R? with boundary A.
(T*R?, wyy) ——

A

@ Lagrangian fillings might exist
or not. If so, g(L) = ga(N).

@ Conjectural ADE Classification
if A = Ag for positive braid .

@ Describe Lagrangian surfaces in
Weinstein 4-folds, objects in
Fukaya and sheaf categories,
mirror symmetry, etc.
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iy (L)
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A quick aside for broader context

’ Bird’s-eye tunnel view: Legendrian submanifolds everywhere. ‘

How to Parallel Park

@ (—) Any symplectic manifold has the situation above inside. ([D82])
(+) Any symplectic manifold = “symplectic divisor + Weinstein". ([D96])
(Weinstein: generalized T*L <> Legendrian handlebodies +» Lagrangian skeleta.)

@ Detection of Reeb orbits, computation of Floer-theoretic invariants,
classification of contact structures, connections to other areas.
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How do we study Lagrangians and Legendrians?

Microlocal: (adj) “Local with respect to both space and cotangent
space.”. Study functions and their first derivatives.

Question: How do Legendrian isotopy classes A, A’ interact?

(i) Toy example: For subsets A, B C R? with characteristics
Xa, X8 : R? — {0,1}, intersection AN B captured by product x4 - X5-

(i) Idea: Since every Legendrian link in T R? has a front m(A) C R?, study
constructible functions with respect to the stratification m(A).

S

(iii) The right setup: study constructible sheaves. The notion of “first
derivative” is captured by the singular support, pioneered by Mikio Sato.

0
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Categories of sheaves on R? singularly supported on a front

The category: A C T R? Legendrian, C(A) the dg-derived category of
decorated constructible sheaves on R? with singular support on A.*
(— constructible with respect to the front m(A) C R? + microlocal rank 1 condition)
(i) The category C(A)€ is a contact isotopy invariant of A (GKS). Sheaves
interact with each other via RHom, generalizing intersections.
(i) 3 geometric moduli of objects Mi(A) for C(A)¢ by Toén-Vaquié.
(III) mt(/\) = {(Vl, Vo, V3, Vg, V5) S (C2, det(v,-, V,'+1) = 1,[ S Z5}/PGL2(C)
v1, v, 03, 04,05 € C2 V1 = 7“{’77‘(‘]61)

/—\ Vo = ’Lm(fz)
V3 = Zm(fg)
vg = im(f1)
vs = ker(f5)

Set vi = (1,0),v2 = (0,1),v3 = (1, z1), va = (22, z3), s = (22, —1).
Then M) = {zzn+ 2 +zzm=1}CC} ,, .
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A potential moduli of Lagrangian Fillings

‘New look at problem: Study fillings in T*R? using sheaves in R2‘

o For Legendrian links A, 8 = 0,05, - - - 7j, ), the moduli M(Ag) is
isomorphic to the smooth affine variety:

{(fo,fl, e Fu = Fo) € (FETYO) . 5y 5 Fvj e [/(/3)1} / GL(C).

Thus, M(Ag) parametrizes tuples of flags with transversality conditions
according to /5. The cluster algebra will be in the ring C[(Ag)].

o Important: Lagrangian filling L of A gives (C*)2(5) © 9Mi(A) chart.
(Lagr. filling with Abelian local system gives point in 9t(A). Think (C*)1()) = HY(L, C*)).
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A few examples

o Trefoil Example: Then M(A3,) = {z1 + z3 + 212023 + 1 = 0} C C3,
and we have five algebraic tori, all given by fillings:
T, = Spec{zlil7 (1+zz)H}, T = Spec{zil, (14z2)}, T3= Spec{zlil7z3i1},
Ts = Spec{z!, (1 + 2122) %1},  Ts = Spec{z}?, (1 + z3z) ™'}

(T*R?*, wyt) -
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A few examples

o Trefoil Example: Then M(A3,) = {z1 + z3 + 212023 + 1 = 0} C C3,
and we have five algebraic tori, all given by fillings:
T, = Spec{zlil7 (1+zz)H}, T = Spec{zil, (14z2)}, T3= Spec{zljd7 z3i1},
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A few examples

o Trefoil Example: Then M(A3,) = {z1 + z3 + 212023 + 1 = 0} C C3,
and we have five algebraic tori, all given by fillings:

T, = Spec{zlil7 (l—l—zlzz)j:l}7 T = Spec{zil, (1+Z322)i1} T3 = Spec{z i17z3i1},

T4 = Spec{z!, (1 + 2122)*1}, Ts = spec{z2 ,(1 + zgzg)il}

o If 8= (01" 0k_1)k"", then Ag is max-tb Legendrian (k, n)-torus link
and has moduli M(Ag) =T} ., C Gr(k, k + n), the top open positroid.

o Let u,w €S, then Ay 1= Ag(w)g(u-1w) has moduli M(A, ) = R7 ,
the open Richardson variety. (here all up to frozens, cf. marked points)

@ For (5 algebraic, also wild character varieties. (now T*X, cf. P.Boalch's work.)
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First appearance of cluster algebras

Theorem (Simplified main result)

Let Ag C (R3,&:) be the Legendrian link associated to a positive braid
word 3. Then C[IM(Ag)] is a cluster algebra and, in many cases, every
cluster seed is known to come from a Lagrangian filling.

A Lagrangian filling gives toric chart (C*)>(5) ¢ M(A) , but we need
three more ingredients: quivers, coordinates and transition functions.

All these ingredients will be described symplectically: back to geometry!
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Inspiration from Lagrangian Disk Surgeries

Recall Lagrangian surgery: inputs Lagrangian filling and disk.
Outputs another Lagrangian filling and with disk. It is involutive.

1. The disks in orange and purple are Lagrangian.

2. Any curve 7 intersecting v = /A? changes under Lagrangian disk surgery
along A? to curve 7,(n) if - > 0. (It stays the same otherwise.)

If we encode this change via intersection quiver we get quiver mutation!
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embedded curves 0Dy, ... 0Dy, (1) C L are a basis of Hy(L,Z).
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From IL-compressible systems to cluster seeds

Towards clusters. For each toric chart T, C 9t(A), such © gives:
(i) © gives quiver in T, via geometric intersection of its boundary curves.
(i) © gives coordinates in Ty, a coordinate A; : T, — C* per each D; € D.

(iii) Changes under Lagrangian disk surgeries are “cluster A-mutations”.
(T*R?,wy;)

///,, ~
4

Lagrangian
skeleton

L+local system e

Another use: L-compressible systems D give skeleta LUD for (T*R2,A)
and End(©* @ L*) generate 20( T*R2, N). (— bounded t-structures)



What we want and what we (will) have

Summarizing table of ingredients

Legendrian A Moduli space M(A)




What we want and what we (will) have

Summarizing table of ingredients

Legendrian A Moduli space M(A)
Lagrangian filling L of A ———  Toric chart T, C M(A)




What we want and what we (will) have

Summarizing table of ingredients

Legendrian A Moduli space M(A)
Lagrangian filling L of A ———  Toric chart T, C M(A)

L-compressing system © for L—  Quiver Q(®D) for T,



What we want and what we (will) have

Summarizing table of ingredients

Legendrian A

Lagrangian filling L of A ——
L-compressing system © for L—
Disk D; € ©

Moduli space M(A)
Toric chart T, C M(A)
Quiver Q(D) for T
Function A; : T, — C*



What we want and what we (will) have

Summarizing table of ingredients

Legendrian A Moduli space M(A)
Lagrangian filling L of A ———  Toric chart T, C M(A)
L-compressing system © for L—  Quiver Q(®D) for T,
Disk D; € © Function A;: T, — C*

We want: C[91(A)] is cluster algebra with a (T, Q(®D)) as initial seed,
and Lagrangian disk surgery as mutation. We must work on:



What we want and what we (will) have

Summarizing table of ingredients

Legendrian A Moduli space M(A)
Lagrangian filling L of A ———  Toric chart T, C M(A)
L-compressing system © for L—  Quiver Q(®D) for T,
Disk D; € © Function A;: T, — C*

We want: C[91(A)] is cluster algebra with a (T, Q(®D)) as initial seed,
and Lagrangian disk surgery as mutation. We must work on:

o Construct a filling L of A and an L-compressing system © for L.



The program
000e00

What we want and what we (will) have

Summarizing table of ingredients

Legendrian A Moduli space M(A)
Lagrangian filling L of A ———  Toric chart T, C M(A)
L-compressing system © for L—  Quiver Q(®D) for T,
Disk D; € © Function A;: T, — C*

We want: C[91(A)] is cluster algebra with a (T, Q(®D)) as initial seed,
and Lagrangian disk surgery as mutation. We must work on:

o Construct a filling L of A and an L-compressing system © for L.

o Each function A; : T, — C* ought to extend to a global regular function

A; : M(N) — C.



The program
000e00

What we want and what we (will) have

Summarizing table of ingredients

Legendrian A Moduli space M(A)
Lagrangian filling L of A ———  Toric chart T, C M(A)
L-compressing system © for L—  Quiver Q(®D) for T,
Disk D; € © Function A;: T, — C*

We want: C[91(A)] is cluster algebra with a (T, Q(®D)) as initial seed,
and Lagrangian disk surgery as mutation. We must work on:

o Construct a filling L of A and an L-compressing system © for L.
o Each function A; : T, — C* ought to extend to a global regular function

A; : M(N) — C.

o Surgeries along disks in © induce mutation on quiver and variables.



The program
000e00

What we want and what we (will) have

Summarizing table of ingredients

Legendrian A Moduli space M(A)
Lagrangian filling L of A ———  Toric chart T, C M(A)
L-compressing system © for L—  Quiver Q(®D) for T,
Disk D; € © Function A;: T, — C*

We want: C[91(A)] is cluster algebra with a (T, Q(®D)) as initial seed,
and Lagrangian disk surgery as mutation. We must work on:

o Construct a filling L of A and an L-compressing system © for L.

o Each function A; : T, — C* ought to extend to a global regular function

A; : M(N) — C.

o Surgeries along disks in © induce mutation on quiver and variables.

o Regularity of mutated pp,(A;) + generators of C[2(A)] are cluster.
(Starfish lemma gives C[(A)] = U, then need A = U. Also codim-2 argument.)
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This is successfully implemented for A = Ag, after due modifications.
o Fillings L always exists for A = Ag: weaves construct many of them.

@ There are Ag for which no LL-compressing system © exists for any L.

(i) Solution 1: relax condition in © to allow immersed Lagrangian disks.
Require a minimal amount of immersed disks. (— correct quiver)
Immersed disks lead to non-vanishing A; € C[9t(A)]. (— frozen variables)

Then 3 L with these “partial” L-compressing systems © for A = As.
(i) Solution 2: If § contains A?, 3 L with L-compressing system ®. For

general 3, employ localization. (— Bott-Samelson to braid varieties)

@ In either case, need to verify global regularity, changes under Lagrangian
surgery and so on. Need explicit constructions and computations:

Weaves provide what is needed: build L, ®, formulas for A; and surgeries.

@ All this, weaves and more, in the next lecture!



The end of the beginning.

Thanks a lot!
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