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Introduction Symplectic topology Microlocal invariants The program

Cluster algebras and symplectic topology

Goal: Explain how cluster algebras arise in 4D symplectic topology.

Lecture 1: Introduction to the program, with Legendrian links Λ and
their sheaf moduli M(Λ). Survey of applications and developments.

Lecture 2: Show C[M(Λβ)] is a cluster algebra. (← technique: weaves)

Lecture 3: The map Lagc (Λβ) −→ Seed(M(Λβ)) surjects. (← QPs)

Intuitively, all cluster seeds arise from Lagrangians.

These techniques solve problems, plus new questions and connections!
(Core references: 2308.00043,2207.11607,2204.13244,2007.04943)

B. An, Y. Bae, I. Le, W. Li, H. Gao, E. Gorsky, M. Gorsky, J. Hughes, E. Lee, A. Roy,

J. Simental, L. Shen, M. Sherman-Bennett, D. Treumann, D. Weng, E. Zaslow. . .
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A few applications

Theme: use the interaction of Lagrangian surfaces with cluster algebras

(i) New results in symplectic topology.

Construct ∞’ly many Hamiltonian isotopy classes of Lagrangian surfaces.
(geometric compact generators and hearts in 4D wrapped Fukaya cat.)

Insights into exact Lagrangian fillings. (→ Conjectural ADE classification)

Holomorphic symplectic structures on moduli M(Λβ), CY structures, etc.

(ii) New results in cluster algebras.

Cluster structures on Richardson varieties. (+ braid varieties, any Lie type)

Construction and properties of Donaldson-Thomas transformations (DT).

E.g. prove Muller-Speyer twist equals DT (=⇒ target
q.c.
= source)

Accessing seeds combinatorially via weaves, including non-Plücker seeds.

New quiver with potential based on curves in surfaces. (← rigid)

Weaves also used in spectral networks, in higher dimensional contact topology,

e.g. Lagrangian concordances, doubling, and more.
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Today: A 4D symplectic topology problem

Helpful mindset: Work on geometry, extract algebra

(i) Geometric problem: study Lagrangian fillings of Legendrian links .
(Filling is surface in (D4, ωst), link is in 3-sphere boundary S3 = ∂D4.)

E.g. classification of Legendrian links, up to contact isotopy?
Classification of Lagrangian fillings, up to Hamiltonian isotopy?

(ii) Extract algebra: microlocal theory of sheaves in R2 from Legendrian Λ.
( dg-category C(Λ) and moduli space M(Λ) are invariants of Λ.)

How do you effectively compute this dg-category? (← objects, morphisms)

How much do C(Λ),M(Λ) know about Λ and its fillings?

Please ask questions throughout so that we can all learn. Thanks!
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Legendrian links I (ambiently: 4D inside, 3D boundary)

Consider R2
q1,q2

and its 4D cotangent bundle T ∗R2 = R2
q1,q2
× R2

p1,p2
.

I1. Liouville 1-form λLiouv := p1dq1 + p2dq2 and ωst := dλLiouv is symplectic.
Symplectic is dω = 0 & ω2 6= 0. See sp: diff. geom. of anti-symmetric.

I2. L ⊂ T ∗R2 exact Lagrangian if λLiouv |L exact. (← same as Hamiltonian iso.)

Exact Lagrangians must be non-compact, i.e. ∂L 6= 0.

B1. Restriction of λLiouv to 3D unit cotangent T ∗∞R2 := {|p| = 1} is contact.
(Contact is 1 of 3 geometries of non-zero distributions, with dynamics & Engel.)

B2. Λ ⊂ T ∗∞R2 link is Legendrian if TΛ ⊂ ker{λLiouv |T∗∞R2}.
(Legendrians Λ are a good boundary condition for exact Lagrangians L: think Λ = ∂L.)
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Legendrian links II (in practice)

Legendrian links Λ ⊂ T ∗∞R2 are recovered by projection π(Λ) to R2
q1,q2

.

(i) Fronts for Legendrian links ↔ planar immersed curves with cusps:

Important example: any positive braid word β defines Λβ ⊂ T ∗∞R2.

(ii) Λ1,Λ2 Legendrian isotopic ↔ fronts equal via Leg. Reidemeister moves.

(iii) ∃ Λ1,Λ2 smoothly∗ equal but not Legendrian isotopic. (E.g. Λβ1
,Λβ2

.)

(iv) Any front stratifies plane R2: partition into 0, 1, 2-dimensional pieces.
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Lagrangian Fillings of Legendrian links

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link Λ ⊂ (T ∗∞R2, ξst) ∼= (R2×S1
θ , ker(dθ− ydx)).

Cotangent bundle T∗R2 with λLiouv := p1dq1 + p2dq2, (q1, q2) base, (p1, p2) fiber.

2. Study embedded exact Lagrangian surfaces L ⊂ T ∗R2 with boundary Λ.
Lagrangian fillings might exist
or not. If so, g(L) = g4(Λ).

Conjectural ADE Classification
if Λ = Λβ for positive braid β.

Describe Lagrangian surfaces in
Weinstein 4-folds, objects in
Fukaya and sheaf categories,
mirror symmetry, etc.



Introduction Symplectic topology Microlocal invariants The program

Lagrangian Fillings of Legendrian links

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link Λ ⊂ (T ∗∞R2, ξst) ∼= (R2×S1
θ , ker(dθ− ydx)).

Cotangent bundle T∗R2 with λLiouv := p1dq1 + p2dq2, (q1, q2) base, (p1, p2) fiber.

2. Study embedded exact Lagrangian surfaces L ⊂ T ∗R2 with boundary Λ.
Lagrangian fillings might exist
or not. If so, g(L) = g4(Λ).

Conjectural ADE Classification
if Λ = Λβ for positive braid β.

Describe Lagrangian surfaces in
Weinstein 4-folds, objects in
Fukaya and sheaf categories,
mirror symmetry, etc.



Introduction Symplectic topology Microlocal invariants The program

Lagrangian Fillings of Legendrian links

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link Λ ⊂ (T ∗∞R2, ξst) ∼= (R2×S1
θ , ker(dθ− ydx)).

Cotangent bundle T∗R2 with λLiouv := p1dq1 + p2dq2, (q1, q2) base, (p1, p2) fiber.

2. Study embedded exact Lagrangian surfaces L ⊂ T ∗R2 with boundary Λ.

Lagrangian fillings might exist
or not. If so, g(L) = g4(Λ).

Conjectural ADE Classification
if Λ = Λβ for positive braid β.

Describe Lagrangian surfaces in
Weinstein 4-folds, objects in
Fukaya and sheaf categories,
mirror symmetry, etc.



Introduction Symplectic topology Microlocal invariants The program

Lagrangian Fillings of Legendrian links

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link Λ ⊂ (T ∗∞R2, ξst) ∼= (R2×S1
θ , ker(dθ− ydx)).

Cotangent bundle T∗R2 with λLiouv := p1dq1 + p2dq2, (q1, q2) base, (p1, p2) fiber.

2. Study embedded exact Lagrangian surfaces L ⊂ T ∗R2 with boundary Λ.

Lagrangian fillings might exist
or not. If so, g(L) = g4(Λ).

Conjectural ADE Classification
if Λ = Λβ for positive braid β.

Describe Lagrangian surfaces in
Weinstein 4-folds, objects in
Fukaya and sheaf categories,
mirror symmetry, etc.



Introduction Symplectic topology Microlocal invariants The program

Lagrangian Fillings of Legendrian links

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link Λ ⊂ (T ∗∞R2, ξst) ∼= (R2×S1
θ , ker(dθ− ydx)).

Cotangent bundle T∗R2 with λLiouv := p1dq1 + p2dq2, (q1, q2) base, (p1, p2) fiber.

2. Study embedded exact Lagrangian surfaces L ⊂ T ∗R2 with boundary Λ.

Lagrangian fillings might exist
or not. If so, g(L) = g4(Λ).

Conjectural ADE Classification
if Λ = Λβ for positive braid β.

Describe Lagrangian surfaces in
Weinstein 4-folds, objects in
Fukaya and sheaf categories,
mirror symmetry, etc.



Introduction Symplectic topology Microlocal invariants The program

Lagrangian Fillings of Legendrian links

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link Λ ⊂ (T ∗∞R2, ξst) ∼= (R2×S1
θ , ker(dθ− ydx)).

Cotangent bundle T∗R2 with λLiouv := p1dq1 + p2dq2, (q1, q2) base, (p1, p2) fiber.

2. Study embedded exact Lagrangian surfaces L ⊂ T ∗R2 with boundary Λ.

Lagrangian fillings might exist
or not. If so, g(L) = g4(Λ).

Conjectural ADE Classification
if Λ = Λβ for positive braid β.

Describe Lagrangian surfaces in
Weinstein 4-folds, objects in
Fukaya and sheaf categories,
mirror symmetry, etc.



Introduction Symplectic topology Microlocal invariants The program

Lagrangian Disk Surgeries

A construction of Lagrangian fillings: Lagrangian disk surgery.

Preserves the smooth isotopy class, typically not the Hamiltonian one.
Note that the disks in orange and purple are Lagrangian too. In 1D:
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A quick aside for broader context

Bird’s-eye tunnel view: Legendrian submanifolds everywhere.

(→) Any symplectic manifold has the situation above inside. ([D82])

(←) Any symplectic manifold = “symplectic divisor + Weinstein”. ([D96])

(Weinstein: generalized T∗L ↔ Legendrian handlebodies ↔ Lagrangian skeleta.)

Detection of Reeb orbits, computation of Floer-theoretic invariants,
classification of contact structures, connections to other areas.
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How do we study Lagrangians and Legendrians?

Microlocal: (adj) “Local with respect to both space and cotangent
space.”. Study functions and their first derivatives.

Question: How do Legendrian isotopy classes Λ,Λ′ interact?

(i) Toy example: For subsets A,B ⊂ R2 with characteristics
χA, χB : R2 −→ {0, 1}, intersection A ∩ B captured by product χA · χB .

(ii) Idea: Since every Legendrian link in T ∗∞R2 has a front π(Λ) ⊂ R2, study
constructible functions with respect to the stratification π(Λ).

(iii) The right setup: study constructible sheaves. The notion of “first
derivative” is captured by the singular support, pioneered by Mikio Sato.
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Categories of sheaves on R2 singularly supported on a front

The category: Λ ⊂ T ∗∞R2 Legendrian, C(Λ) the dg-derived category of
decorated constructible sheaves on R2 with singular support on Λ.∗

(→ constructible with respect to the front π(Λ) ⊂ R2 + microlocal rank 1 condition)

(i) The category C(Λ)c is a contact isotopy invariant of Λ (GKS). Sheaves
interact with each other via RHom, generalizing intersections.

(ii) ∃ geometric moduli of objects M(Λ) for C(Λ)c by Toën-Vaquié.

(iii) M(Λ) = {(v1, v2, v3, v4, v5) : vi ∈ C2, det(vi , vi+1) = 1, i ∈ Z5}/PGL2(C)

Set v1 = (1, 0), v2 = (0, 1), v3 = (1, z1), v4 = (z4, z3), v5 = (z2,−1).
Then M(Λ) = {z3 + z1 + z1z3z2 = 1} ⊂ C3

z1,z2,z3
.
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A potential moduli of Lagrangian Fillings

New look at problem: Study fillings in T ∗R2 using sheaves in R2

For Legendrian links Λβ , β = σi1σi2 · · ·σil(β)
, the moduli M(Λβ) is

isomorphic to the smooth affine variety:{
(F0,F1, . . . ,Fl(β) = F0) ∈ (Flaff

m )l(β) : Fj−1

sij−→ Fj ,∀j ∈ [l(β)]

}
/GLm(C).

Thus, M(Λβ) parametrizes tuples of flags with transversality conditions
according to β. The cluster algebra will be in the ring C[M(Λβ)].

Important: Lagrangian filling L of Λ gives (C∗)b1(L) ⊂M(Λ) chart.
(Lagr. filling with Abelian local system gives point in M(Λ). Think (C∗)b1(L) = H1(L,C∗)).
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A few examples

Trefoil Example: Then M(Λ31 ) = {z1 + z3 + z1z2z3 + 1 = 0} ⊂ C3,
and we have five algebraic tori, all given by fillings:

T1 = Spec{z±1
1 , (1+z1z2)±1}, T2 = Spec{z±1

3 , (1+z3z2)±1}, T3 = Spec{z±1
1 , z±1

3 },

T4 = Spec{z±1
2 , (1 + z1z2)±1}, T5 = Spec{z±1

2 , (1 + z3z2)±1}.

If β = (σ1 · · ·σk−1)k+n, then Λβ is max-tb Legendrian (k, n)-torus link
and has moduli M(Λβ) ∼= Π◦k,n+k ⊂ Gr(k, k + n), the top open positroid.

Let u,w ∈ Sn, then Λu,w := Λβ(w)β(u−1w0) has moduli M(Λu,w ) ∼= R◦u,w
the open Richardson variety. (here all up to frozens, cf. marked points)

For β algebraic, also wild character varieties. (now T∗Σ, cf. P.Boalch’s work.)
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First appearance of cluster algebras

Theorem (Simplified main result)

Let Λβ ⊂ (R3, ξst) be the Legendrian link associated to a positive braid
word β. Then C[M(Λβ)] is a cluster algebra and, in many cases, every
cluster seed is known to come from a Lagrangian filling.

A Lagrangian filling gives toric chart (C∗)b1(L) ⊂M(Λ) , but we need
three more ingredients: quivers, coordinates and transition functions.

All these ingredients will be described symplectically: back to geometry!
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Inspiration from Lagrangian Disk Surgeries

Recall Lagrangian surgery: inputs Lagrangian filling and disk.
Outputs another Lagrangian filling and with disk. It is involutive.

1. The disks in orange and purple are Lagrangian.

2. Any curve η intersecting γ = ∂∆2 changes under Lagrangian disk surgery
along ∆2 to curve τγ(η) if η · γ > 0. (It stays the same otherwise.)

If we encode this change via intersection quiver we get quiver mutation!
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L-compressible systems for Lagrangian fillings

Definition

A maximal L-compressible system for L is a collection of Lagrangian
disks {D1, . . . ,Db1(L)} properly embedded in T ∗R2 \ L such that the

embedded curves ∂D1, . . . ∂Db1(L) ⊂ L are a basis of H1(L,Z).

Example. Λ max-tb Legendrian link of isolated singularity f : C2 → C.
Then a real morsification fR : R2 → R gives a Lagrangian filling L(fR)
and a maximal L-compressible system.
(L is “Lagrangian Milnor fiber” and Di are “vanishing thimbles”.)
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From L-compressible systems to cluster seeds

Towards clusters. For each toric chart TL ⊂M(Λ), such D gives:

(i) D gives quiver in TL via geometric intersection of its boundary curves.

(ii) D gives coordinates in TL, a coordinate Ai : TL −→ C∗ per each Di ∈ D.

(iii) Changes under Lagrangian disk surgeries are “cluster A-mutations”.

Another use: L-compressible systems D give skeleta L∪D for (T ∗R2,Λ)
and End(D∗ ⊕ L∗) generate W(T ∗R2,Λ). (→ bounded t-structures)
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What we want and what we (will) have

Summarizing table of ingredients

Legendrian Λ −−−−−−−−−−−−→ Moduli space M(Λ)

Lagrangian filling L of Λ −−−−→ Toric chart TL ⊂M(Λ)

L-compressing system D for L−−→ Quiver Q(D) for TL

Disk Di ∈ D −−−−−−−−−−−−−→ Function Ai : TL −→ C∗

We want: C[M(Λ)] is cluster algebra with a (TL,Q(D)) as initial seed,
and Lagrangian disk surgery as mutation. We must work on:

Construct a filling L of Λ and an L-compressing system D for L.

Each function Ai : TL −→ C∗ ought to extend to a global regular function

Ai : M(Λ) −→ C.

Surgeries along disks in D induce mutation on quiver and variables.

Regularity of mutated µDj (Ai ) + generators of C[M(Λ)] are cluster.
(Starfish lemma gives C[M(Λ)] = U , then need A = U . Also codim-2 argument.)
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The Jagger-Richards Motto

This is successfully implemented for Λ = Λβ , after due modifications.

Fillings L always exists for Λ = Λβ : weaves construct many of them.

There are Λβ for which no L-compressing system D exists for any L.

(i) Solution 1: relax condition in D to allow immersed Lagrangian disks.
Require a minimal amount of immersed disks. (→ correct quiver)
Immersed disks lead to non-vanishing Ai ∈ C[M(Λ)]. (→ frozen variables)

Then ∃ L with these “partial” L-compressing systems D for Λ = Λβ .

(ii) Solution 2: If β contains ∆2, ∃ L with L-compressing system D. For

general β, employ localization. (→ Bott-Samelson to braid varieties)

In either case, need to verify global regularity, changes under Lagrangian
surgery and so on. Need explicit constructions and computations:

Weaves provide what is needed: build L, D, formulas for Ai and surgeries.

All this, weaves and more, in the next lecture!
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The end of the beginning.

Thanks a lot!
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