Microlocal invariants 00000

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Cluster algebras and symplectic topology I

Summer School on Cluster Algebras 2023

Roger Casals (UC Davis) August 21st 2023

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Cluster algebras and symplectic topology

Goal: Explain how cluster algebras arise in 4D symplectic topology.

Cluster algebras and symplectic topology

Goal: Explain how cluster algebras arise in 4D symplectic topology.

 Lecture 1: Introduction to the program, with Legendrian links Λ and their sheaf moduli M(Λ). Survey of applications and developments.

Cluster algebras and symplectic topology

Goal: Explain how cluster algebras arise in 4D symplectic topology.

- Lecture 1: Introduction to the program, with Legendrian links Λ and their sheaf moduli $\mathfrak{M}(\Lambda)$. Survey of applications and developments.
- Lecture 2: Show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra. (\leftarrow technique: weaves)

Cluster algebras and symplectic topology

Goal: Explain how cluster algebras arise in 4D symplectic topology.

- Lecture 1: Introduction to the program, with Legendrian links Λ and their sheaf moduli $\mathfrak{M}(\Lambda)$. Survey of applications and developments.
- Lecture 2: Show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra. (\leftarrow technique: weaves)
- Lecture 3: The map $Lag^{c}(\Lambda_{\beta}) \longrightarrow Seed(\mathfrak{M}(\Lambda_{\beta}))$ surjects. ($\leftarrow QPs$) Intuitively, *all* cluster seeds arise from Lagrangians.

Cluster algebras and symplectic topology

Goal: Explain how cluster algebras arise in 4D symplectic topology.

- Lecture 1: Introduction to the program, with Legendrian links Λ and their sheaf moduli $\mathfrak{M}(\Lambda)$. Survey of applications and developments.
- Lecture 2: Show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra. (\leftarrow technique: weaves)
- Lecture 3: The map $Lag^{c}(\Lambda_{\beta}) \longrightarrow Seed(\mathfrak{M}(\Lambda_{\beta}))$ surjects. ($\leftarrow QPs$) Intuitively, *all* cluster seeds arise from Lagrangians.

These techniques solve problems, plus new questions and connections! (Core references: 2308.00043,2207.11607,2204.13244,2007.04943)

Cluster algebras and symplectic topology

Goal: Explain how cluster algebras arise in 4D symplectic topology.

- Lecture 1: Introduction to the program, with Legendrian links Λ and their sheaf moduli $\mathfrak{M}(\Lambda)$. Survey of applications and developments.
- Lecture 2: Show $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra. (\leftarrow technique: weaves)
- Lecture 3: The map $Lag^{c}(\Lambda_{\beta}) \longrightarrow Seed(\mathfrak{M}(\Lambda_{\beta}))$ surjects. ($\leftarrow QPs$) Intuitively, *all* cluster seeds arise from Lagrangians.

These techniques solve problems, plus new questions and connections! (Core references: 2308.00043,2207.11607,2204.13244,2007.04943)

 B. An, Y. Bae, I. Le, W. Li, H. Gao, E. Gorsky, M. Gorsky, J. Hughes, E. Lee, A. Roy, J. Simental, L. Shen, M. Sherman-Bennett, D. Treumann, D. Weng, E. Zaslow...

Introduction ○●○	Symplectic topology ဂဂဂဂဂ	Microlocal invariants	The program
A few application	ons		
Theme: use the	e interaction of Lagrangian	surfaces with cluster algeb	oras

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Introduction O●O	Symplectic topology	Microlocal invariants	The program
A few appl	ications		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

(i) New results in symplectic topology.

Introduction ∩●0	Symplectic topology	Microlocal invariants	The program
A few appl	ications		

(i) New results in symplectic topology.

 Construct ∞'ly many Hamiltonian isotopy classes of Lagrangian surfaces. (geometric compact generators and hearts in 4D wrapped Fukaya cat.)

Introduction ೧●೧	Symplectic topology ဂဂဂဂဂ	Microlocal invariants 00000	The program
A few appli	cations		

(i) New results in symplectic topology.

- Construct ∞'ly many Hamiltonian isotopy classes of Lagrangian surfaces. (geometric compact generators and hearts in 4D wrapped Fukaya cat.)
- Insights into exact Lagrangian fillings. $(\rightarrow \text{Conjectural ADE classification})$

Introduction ∩●0	Symplectic topology	Microlocal invariants	The program
A few appli	cations		

(i) New results in symplectic topology.

- Construct ∞ 'ly many Hamiltonian isotopy classes of Lagrangian surfaces. (geometric compact generators and hearts in 4D wrapped Fukaya cat.)
- Insights into exact Lagrangian fillings. $(\rightarrow \text{Conjectural ADE classification})$
- Holomorphic symplectic structures on moduli $\mathfrak{M}(\Lambda_{\beta})$, CY structures, etc.

Introduction ∩●0	Symplectic topology	Microlocal invariants	The program
A few appl	ications		

(i) New results in symplectic topology.

- Construct ∞ 'ly many Hamiltonian isotopy classes of Lagrangian surfaces. (geometric compact generators and hearts in 4D wrapped Fukaya cat.)
- Insights into exact Lagrangian fillings. $(\rightarrow \text{Conjectural ADE classification})$
- Holomorphic symplectic structures on moduli $\mathfrak{M}(\Lambda_{\beta})$, CY structures, etc.

(ii) New results in cluster algebras.

• Cluster structures on Richardson varieties. (+ braid varieties, any Lie type)

Introduction ೧●೧	Symplectic topology ဂဂဂဂဂ	Microlocal invariants	The program
A few application	ons		

(i) New results in symplectic topology.

- Construct ∞ 'ly many Hamiltonian isotopy classes of Lagrangian surfaces. (geometric compact generators and hearts in 4D wrapped Fukaya cat.)
- Insights into exact Lagrangian fillings. $(\rightarrow \text{Conjectural ADE classification})$
- Holomorphic symplectic structures on moduli $\mathfrak{M}(\Lambda_{\beta})$, CY structures, etc.

(ii) New results in cluster algebras.

- Cluster structures on Richardson varieties. (+ braid varieties, any Lie type)
- Construction and properties of Donaldson-Thomas transformations (DT).
 E.g. prove Muller-Speyer twist equals DT (⇒ target ^{q.c.} = source)

Introduction ∩●∩	Symplectic topology ဂဂဂဂဂ	Microlocal invariants	The program
A few application	ons		

(i) New results in symplectic topology.

- Construct ∞ 'ly many Hamiltonian isotopy classes of Lagrangian surfaces. (geometric compact generators and hearts in 4D wrapped Fukaya cat.)
- Insights into exact Lagrangian fillings. $(\rightarrow \text{Conjectural ADE classification})$
- Holomorphic symplectic structures on moduli $\mathfrak{M}(\Lambda_{\beta})$, CY structures, etc.

(ii) New results in cluster algebras.

- Cluster structures on Richardson varieties. (+ braid varieties, any Lie type)
- Construction and properties of Donaldson-Thomas transformations (DT).
 E.g. prove Muller-Speyer twist equals DT (⇒ target ^{q.c.}/₌ source)
- Accessing seeds combinatorially via weaves, including non-Plücker seeds.

Introduction	Symplectic topology	Microlocal invariants	The program
∩●∩	ဂဂဂဂဂ	00000	
A few application	ons		

(i) New results in symplectic topology.

- Construct ∞'ly many Hamiltonian isotopy classes of Lagrangian surfaces. (geometric compact generators and hearts in 4D wrapped Fukaya cat.)
- Insights into exact Lagrangian fillings. $(\rightarrow \text{Conjectural ADE classification})$
- Holomorphic symplectic structures on moduli $\mathfrak{M}(\Lambda_{\beta})$, CY structures, etc.

(ii) New results in cluster algebras.

- Cluster structures on Richardson varieties. (+ braid varieties, any Lie type)
- Construction and properties of Donaldson-Thomas transformations (DT). E.g. prove Muller-Speyer twist equals DT (\Longrightarrow target $\stackrel{q.c.}{=}$ source)
- Accessing seeds combinatorially via weaves, including non-Plücker seeds.

• New quiver with potential based on curves in surfaces. (\leftarrow rigid)

Introduction ೧●೧	Symplectic topology ဂဂဂဂဂ	Microlocal invariants	The program
A few application	ons		

(i) New results in symplectic topology.

- Construct ∞'ly many Hamiltonian isotopy classes of Lagrangian surfaces. (geometric compact generators and hearts in 4D wrapped Fukaya cat.)
- Insights into exact Lagrangian fillings. $(\rightarrow \text{Conjectural ADE classification})$
- Holomorphic symplectic structures on moduli $\mathfrak{M}(\Lambda_{\beta})$, CY structures, etc.

(ii) New results in cluster algebras.

- Cluster structures on Richardson varieties. (+ braid varieties, any Lie type)
- Construction and properties of Donaldson-Thomas transformations (DT).
 E.g. prove Muller-Speyer twist equals DT (⇒ target ^{q.c.} = source)
- Accessing seeds combinatorially via weaves, including non-Plücker seeds.
- New quiver with potential based on curves in surfaces. $(\leftarrow rigid)$

Weaves also used in spectral networks, in higher dimensional contact topology, e.g. Lagrangian concordances, doubling, and more.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Today: A 4D symplectic topology problem

Today: A 4D symplectic topology problem

Helpful mindset: Work on geometry, extract algebra

(i) Geometric problem: study Lagrangian fillings of Legendrian links . (Filling is surface in $(\mathbb{D}^4, \omega_{st})$, link is in 3-sphere boundary $S^3 = \partial \mathbb{D}^4$.)

Today: A 4D symplectic topology problem

- (i) Geometric problem: study Lagrangian fillings of Legendrian links . (Filling is surface in $(\mathbb{D}^4, \omega_{st})$, link is in 3-sphere boundary $S^3 = \partial \mathbb{D}^4$.)
 - E.g. classification of Legendrian links, up to contact isotopy? Classification of Lagrangian fillings, up to Hamiltonian isotopy?

Today: A 4D symplectic topology problem

- (i) Geometric problem: study Lagrangian fillings of Legendrian links . (Filling is surface in $(\mathbb{D}^4, \omega_{st})$, link is in 3-sphere boundary $S^3 = \partial \mathbb{D}^4$.)
 - E.g. classification of Legendrian links, up to contact isotopy? Classification of Lagrangian fillings, up to Hamiltonian isotopy?
- (ii) **Extract algebra**: microlocal theory of sheaves in \mathbb{R}^2 from Legendrian A. (\rightsquigarrow dg-category $\mathfrak{C}(\Lambda)$ and moduli space $\mathfrak{M}(\Lambda)$ are invariants of Λ .)

Today: A 4D symplectic topology problem

- (i) Geometric problem: study Lagrangian fillings of Legendrian links . (Filling is surface in $(\mathbb{D}^4, \omega_{st})$, link is in 3-sphere boundary $S^3 = \partial \mathbb{D}^4$.)
 - E.g. classification of Legendrian links, up to contact isotopy? Classification of Lagrangian fillings, up to Hamiltonian isotopy?
- (ii) Extract algebra: microlocal theory of sheaves in ℝ² from Legendrian Λ.
 (→ dg-category C(Λ) and moduli space M(Λ) are invariants of Λ.)
 - How do you effectively *compute* this dg-category? (← objects, morphisms)

Today: A 4D symplectic topology problem

- (i) Geometric problem: study Lagrangian fillings of Legendrian links . (Filling is surface in $(\mathbb{D}^4, \omega_{st})$, link is in 3-sphere boundary $S^3 = \partial \mathbb{D}^4$.)
 - E.g. classification of Legendrian links, up to contact isotopy? Classification of Lagrangian fillings, up to Hamiltonian isotopy?
- (ii) Extract algebra: microlocal theory of sheaves in ℝ² from Legendrian Λ.
 (→ dg-category C(Λ) and moduli space M(Λ) are invariants of Λ.)
 - How do you effectively *compute* this dg-category? (\leftarrow objects, morphisms)
 - How much do C(Λ), M(Λ) know about Λ and its fillings?

Today: A 4D symplectic topology problem

Helpful mindset: Work on geometry, extract algebra

- (i) Geometric problem: study Lagrangian fillings of Legendrian links . (Filling is surface in $(\mathbb{D}^4, \omega_{st})$, link is in 3-sphere boundary $S^3 = \partial \mathbb{D}^4$.)
 - E.g. classification of Legendrian links, up to contact isotopy? Classification of Lagrangian fillings, up to Hamiltonian isotopy?
- (ii) Extract algebra: microlocal theory of sheaves in ℝ² from Legendrian Λ.
 (→ dg-category C(Λ) and moduli space M(Λ) are invariants of Λ.)
 - How do you effectively *compute* this dg-category? (\leftarrow objects, morphisms)
 - How much do C(Λ), M(Λ) know about Λ and its fillings?

Please ask questions throughout so that we can all learn. Thanks!

Legendrian links I (ambiently: 4D inside, 3D boundary)

Consider $\mathbb{R}^2_{q_1,q_2}$ and its 4D cotangent bundle $T^*\mathbb{R}^2 = \mathbb{R}^2_{q_1,q_2} \times \mathbb{R}^2_{p_1,p_2}$.

Legendrian links I (ambiently: 4D inside, 3D boundary)

Consider $\mathbb{R}^2_{q_1,q_2}$ and its 4D cotangent bundle $\mathcal{T}^*\mathbb{R}^2 = \mathbb{R}^2_{q_1,q_2} \times \mathbb{R}^2_{p_1,p_2}$.

11. Liouville 1-form $\lambda_{Liouv} := p_1 dq_1 + p_2 dq_2$ and $\omega_{st} := d\lambda_{Liouv}$ is symplectic. Symplectic is $d\omega = 0 \& \omega^2 \neq 0$. See sp: diff. geom. of *anti-symmetric*. Introduction

ション ふぼう メリン メリン しょうくしゃ

Legendrian links I (ambiently: 4D inside, 3D boundary)

Consider $\mathbb{R}^2_{q_1,q_2}$ and its 4D cotangent bundle $T^*\mathbb{R}^2 = \mathbb{R}^2_{q_1,q_2} \times \mathbb{R}^2_{p_1,p_2}$.

- 11. Liouville 1-form $\lambda_{Liouv} := p_1 dq_1 + p_2 dq_2$ and $\omega_{st} := d\lambda_{Liouv}$ is symplectic. Symplectic is $d\omega = 0 \& \omega^2 \neq 0$. See sp: diff. geom. of *anti-symmetric*.
- 12. $L \subset T^* \mathbb{R}^2$ exact Lagrangian if $\lambda_{Liouv}|_L$ exact. (\leftarrow same as Hamiltonian iso.) Exact Lagrangians must be non-compact, i.e. $\partial L \neq 0$.

Introduction

Legendrian links I (ambiently: 4D inside, 3D boundary)

Consider $\mathbb{R}^2_{q_1,q_2}$ and its 4D cotangent bundle $T^*\mathbb{R}^2 = \mathbb{R}^2_{q_1,q_2} \times \mathbb{R}^2_{p_1,p_2}$.

- 11. Liouville 1-form $\lambda_{Liouv} := p_1 dq_1 + p_2 dq_2$ and $\omega_{st} := d\lambda_{Liouv}$ is symplectic. Symplectic is $d\omega = 0 \& \omega^2 \neq 0$. See sp: diff. geom. of *anti-symmetric*.
- 12. $L \subset T^* \mathbb{R}^2$ exact Lagrangian if $\lambda_{Liouv}|_L$ exact. (\leftarrow same as Hamiltonian iso.) Exact Lagrangians must be non-compact, i.e. $\partial L \neq 0$.

B1. Restriction of λ_{Liouv} to 3D unit cotangent $T^*_{\infty}\mathbb{R}^2 := \{|p| = 1\}$ is contact. (Contact is 1 of 3 geometries of non-zero distributions, with dynamics & Engel.) Introduction

Legendrian links I (ambiently: 4D inside, 3D boundary)

Consider $\mathbb{R}^2_{q_1,q_2}$ and its 4D cotangent bundle $T^*\mathbb{R}^2 = \mathbb{R}^2_{q_1,q_2} \times \mathbb{R}^2_{p_1,p_2}$.

- 11. Liouville 1-form $\lambda_{Liouv} := p_1 dq_1 + p_2 dq_2$ and $\omega_{st} := d\lambda_{Liouv}$ is symplectic. Symplectic is $d\omega = 0 \& \omega^2 \neq 0$. See sp: diff. geom. of *anti-symmetric*.
- 12. $L \subset T^* \mathbb{R}^2$ exact Lagrangian if $\lambda_{Liouv}|_L$ exact. (\leftarrow same as Hamiltonian iso.) Exact Lagrangians must be non-compact, i.e. $\partial L \neq 0$.

- B1. Restriction of λ_{Liouv} to 3D unit cotangent $T^*_{\infty}\mathbb{R}^2 := \{|p| = 1\}$ is contact. (Contact is 1 of 3 geometries of non-zero distributions, with dynamics & Engel.)
- B2. $\Lambda \subset T_{\infty}^* \mathbb{R}^2$ link is Legendrian if $T\Lambda \subset \ker\{\lambda_{Liouv}|_{T_{\infty}^* \mathbb{R}^2}\}$. (Legendrians Λ are a good boundary condition for exact Lagrangians L: think $\Lambda = \partial L$.)

Introduction 000	Symplectic topology ೧●೧೧೧	Microlocal invariants	The program
Legendrian lir	nks II (in practice		

Legendrian links $\Lambda \subset T^*_{\infty} \mathbb{R}^2$ are recovered by projection $\pi(\Lambda)$ to $\mathbb{R}^2_{q_1,q_2}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

β

Important example: any positive braid word β defines $\Lambda_{\beta} \subset T_{\infty}^* \mathbb{R}^2$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Important example: any positive braid word β defines $\Lambda_{\beta} \subset T_{\infty}^* \mathbb{R}^2$. (ii) Λ_1, Λ_2 Legendrian isotopic \leftrightarrow fronts equal via Leg. Reidemeister moves.

Important example: any positive braid word β defines $\Lambda_{\beta} \subset T_{\infty}^* \mathbb{R}^2$. (ii) Λ_1, Λ_2 Legendrian isotopic \leftrightarrow fronts equal via Leg. Reidemeister moves. (iii) $\exists \Lambda_1, \Lambda_2$ smoothly^{*} equal but not Legendrian isotopic. (E.g. $\Lambda_{\beta_1}, \Lambda_{\beta_2}$.)

Important example: any positive braid word β defines $\Lambda_{\beta} \subset T_{\infty}^* \mathbb{R}^2$. (ii) Λ_1, Λ_2 Legendrian isotopic \leftrightarrow fronts equal via Leg. Reidemeister moves. (iii) $\exists \Lambda_1, \Lambda_2$ smoothly^{*} equal but not Legendrian isotopic. (E.g. $\Lambda_{\beta_1}, \Lambda_{\beta_2}$.) (iv) Any front stratifies plane \mathbb{R}^2 : partition into 0, 1, 2-dimensional pieces.

Lagrangian Fillings of Legendrian links

Symplectic Geometry: Study Lagrangian fillings of Legendrian links
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Lagrangian Fillings of Legendrian links

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link $\Lambda \subset (T_{\infty}^* \mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S_{\theta}^1, \ker(d\theta - ydx))$. Cotangent bundle $T^* \mathbb{R}^2$ with $\lambda_{Liouv} := p_1 dq_1 + p_2 dq_2, (q_1, q_2)$ base, (p_1, p_2) fiber.

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

- 1. Consider a Legendrian link $\Lambda \subset (\mathcal{T}^*_{\infty}\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$ Cotangent bundle $T^*\mathbb{R}^2$ with $\lambda_{Liouv} := p_1 dq_1 + p_2 dq_2$, (q_1, q_2) base, (p_1, p_2) fiber.
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

- 1. Consider a Legendrian link $\Lambda \subset (\mathcal{T}^*_{\infty}\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$ Cotangent bundle $T^*\mathbb{R}^2$ with $\lambda_{Liouv} := p_1 dq_1 + p_2 dq_2$, (q_1, q_2) base, (p_1, p_2) fiber.
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .
 - Lagrangian fillings might exist or not. If so, $g(L) = g_4(\Lambda)$.

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

- 1. Consider a Legendrian link $\Lambda \subset (\mathcal{T}^*_{\infty}\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$ Cotangent bundle $T^*\mathbb{R}^2$ with $\lambda_{Liouv} := p_1 dq_1 + p_2 dq_2$, (q_1, q_2) base, (p_1, p_2) fiber.
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .
 - Lagrangian fillings might exist or not. If so, $g(L) = g_4(\Lambda)$.
 - Conjectural ADE Classification if $\Lambda = \Lambda_{\beta}$ for positive braid β .

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

- 1. Consider a Legendrian link $\Lambda \subset (T_{\infty}^* \mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S_{\theta}^1, \ker(d\theta ydx))$. Cotangent bundle $T^* \mathbb{R}^2$ with $\lambda_{Liouv} := p_1 dq_1 + p_2 dq_2$, (q_1, q_2) base, (p_1, p_2) fiber.
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .
 - Lagrangian fillings might exist or not. If so, $g(L) = g_4(\Lambda)$.
 - Conjectural ADE Classification if Λ = Λ_β for positive braid β.
 - Describe Lagrangian surfaces in Weinstein 4-folds, objects in Fukaya and sheaf categories, mirror symmetry, etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Symplectic topology

Microlocal invariants

The program

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lagrangian Disk Surgeries

A construction of Lagrangian fillings: Lagrangian disk surgery.

Symplectic topology

Microlocal invariants

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ </p>

Lagrangian Disk Surgeries

A construction of Lagrangian fillings: Lagrangian disk surgery.

Preserves the smooth isotopy class, typically *not* the Hamiltonian one. Note that the disks in orange and purple are Lagrangian too. In 1D:

Lagrangian Disk Surgeries

A construction of Lagrangian fillings: Lagrangian disk surgery.

Preserves the smooth isotopy class, typically *not* the Hamiltonian one. Note that the disks in orange and purple are Lagrangian too. In 1D:

A quick aside for broader context

Bird's-eye tunnel view: Legendrian submanifolds everywhere.

A quick aside for broader context

Bird's-eye tunnel view: Legendrian submanifolds everywhere.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(→) Any symplectic manifold has the situation above inside. ([D82])
 (←) Any symplectic manifold = "symplectic divisor + Weinstein". ([D96])
 (Weinstein: generalized T*L ↔ Legendrian handlebodies ↔ Lagrangian skeleta.)

A quick aside for broader context

Bird's-eye tunnel view: Legendrian submanifolds everywhere.

- (→) Any symplectic manifold has the situation above inside. ([D82])
 (←) Any symplectic manifold = "symplectic divisor + Weinstein". ([D96])
 (Weinstein: generalized T*L ↔ Legendrian handlebodies ↔ Lagrangian skeleta.)
- Detection of Reeb orbits, computation of Floer-theoretic invariants, classification of contact structures, connections to other areas.

E 990

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

How do we study Lagrangians and Legendrians?

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

How do we study Lagrangians and Legendrians?

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives.

Question: How do Legendrian isotopy classes Λ,Λ' interact?

ション ふぼう メリン メリン しょうくしゃ

How do we study Lagrangians and Legendrians?

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives. *Question*: How do Legendrian isotopy classes Λ, Λ' interact?

(i) Toy example: For subsets $A, B \subset \mathbb{R}^2$ with characteristics $\chi_A, \chi_B : \mathbb{R}^2 \longrightarrow \{0, 1\}$, intersection $A \cap B$ captured by product $\chi_A \cdot \chi_B$.

ション ふゆ アメビア メロア しょうくしゃ

How do we study Lagrangians and Legendrians?

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives. *Question*: How do Legendrian isotopy classes Λ , Λ' interact?

- (i) Toy example: For subsets $A, B \subset \mathbb{R}^2$ with characteristics $\chi_A, \chi_B : \mathbb{R}^2 \longrightarrow \{0, 1\}$, intersection $A \cap B$ captured by product $\chi_A \cdot \chi_B$.
- (ii) *Idea*: Since every Legendrian link in $T^*_{\infty}\mathbb{R}^2$ has a front $\pi(\Lambda) \subset \mathbb{R}^2$, study constructible functions with respect to the stratification $\pi(\Lambda)$.

How do we study Lagrangians and Legendrians?

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives. *Question*: How do Legendrian isotopy classes Λ , Λ' interact?

- (i) Toy example: For subsets $A, B \subset \mathbb{R}^2$ with characteristics $\chi_A, \chi_B : \mathbb{R}^2 \longrightarrow \{0, 1\}$, intersection $A \cap B$ captured by product $\chi_A \cdot \chi_B$.
- (ii) *Idea*: Since every Legendrian link in $T^*_{\infty}\mathbb{R}^2$ has a front $\pi(\Lambda) \subset \mathbb{R}^2$, study constructible functions with respect to the stratification $\pi(\Lambda)$.

(iii) The right setup: study constructible *sheaves*. The notion of "first derivative" is captured by the *singular support*, pioneered by Mikio Sato.

Introduction ೧೧೧	Symplectic topology	Microlocal invariants ೧●೧೧೧	The program
Categories	of sheaves on \mathbb{R}^2	² singularly supported	on a front

The category: $\Lambda \subset T_{\infty}^* \mathbb{R}^2$ Legendrian, $\mathcal{C}(\Lambda)$ the dg-derived category of decorated constructible sheaves on \mathbb{R}^2 with singular support on Λ .*

(
ightarrow constructible with respect to the front $\pi(\Lambda)\subset \mathbb{R}^2+$ microlocal rank 1 condition)

ション ふゆ アメビア メロア しょうくしゃ

Introduction ೧೧೧	Symplectic topology ဂဂဂဂဂ	Microlocal invariants ○●○○○	The program
Categories of s	sheaves on \mathbb{R}^2	singularly supported	on a front

The category: $\Lambda \subset \mathcal{T}_{\infty}^* \mathbb{R}^2$ Legendrian, $\mathcal{C}(\Lambda)$ the dg-derived category of decorated constructible sheaves on \mathbb{R}^2 with singular support on Λ .*

 $(\rightarrow \mbox{ constructible with respect to the front } \pi(\Lambda) \subset \mathbb{R}^2 + \mbox{microlocal rank 1 condition})$

ション ふゆ アメビア メロア しょうくしゃ

(i) The category $C(\Lambda)^c$ is a contact isotopy *invariant* of Λ (GKS). Sheaves interact with each other via *RHom*, generalizing *intersections*.

 $\begin{array}{c|c} \hline \label{eq:constraints} \hline \label{eq:constraints} \hline \begin{tabular}{c} \begin{ta$

decorated constructible sheaves on \mathbb{R}^2 with singular support on Λ .*

 $(\rightarrow \mbox{ constructible with respect to the front } \pi(\Lambda) \subset \mathbb{R}^2 + \mbox{ microlocal rank 1 condition})$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- (i) The category $C(\Lambda)^c$ is a contact isotopy *invariant* of Λ (GKS). Sheaves interact with each other via *RHom*, generalizing *intersections*.
- (ii) \exists geometric moduli of objects $\mathfrak{M}(\Lambda)$ for $\mathcal{C}(\Lambda)^c$ by Toën-Vaquié.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A potential moduli of Lagrangian Fillings

New look at problem: Study fillings in $\mathcal{T}^*\mathbb{R}^2$ using sheaves in \mathbb{R}^2

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A potential moduli of Lagrangian Fillings

New look at problem: Study fillings in $T^*\mathbb{R}^2$ using sheaves in \mathbb{R}^2

For Legendrian links Λ_β, β = σ_{i1}σ_{i2} ··· σ_{i1(β)}, the moduli M(Λ_β) is isomorphic to the smooth affine variety:

$$\left\{ (\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_{l(\beta)} = \mathcal{F}_0) \in (\mathsf{Fl}_m^{aff})^{l(\beta)} : \mathcal{F}_{j-1} \xrightarrow{s_{i_j}} \mathcal{F}_j, \forall j \in [l(\beta)] \right\} / \mathsf{GL}_m(\mathbb{C}).$$

Thus, $\mathfrak{M}(\Lambda_{\beta})$ parametrizes tuples of flags with transversality conditions according to β . The **cluster algebra** will be in the ring $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$.

ション ふゆ アメビア メロア しょうくしゃ

A potential moduli of Lagrangian Fillings

New look at problem: Study fillings in $T^*\mathbb{R}^2$ using sheaves in \mathbb{R}^2

For Legendrian links Λ_β, β = σ_{i1}σ_{i2} ··· σ_{i1(β)}, the moduli M(Λ_β) is isomorphic to the smooth affine variety:

$$\left\{ (\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_{l(\beta)} = \mathcal{F}_0) \in (\mathsf{Fl}_m^{aff})^{l(\beta)} : \mathcal{F}_{j-1} \xrightarrow{s_{i_j}} \mathcal{F}_j, \forall j \in [l(\beta)] \right\} / \mathsf{GL}_m(\mathbb{C}).$$

Thus, $\mathfrak{M}(\Lambda_{\beta})$ parametrizes tuples of flags with transversality conditions according to β . The **cluster algebra** will be in the ring $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$.

 Important: Lagrangian filling L of Λ gives (C^{*})^{b₁(L)} ⊂ M(Λ) chart. (Lagr. filling with Abelian local system gives point in M(Λ). Think (C^{*})^{b₁(L)} = H¹(L, C^{*})).

ntroduction ೧೧೧	Symplectic topology	Microlocal invariants ೧೧೧●೧	The program
A few exai	nples		
• Trefoil E and we ha	kample: Then $\mathfrak{M}(\Lambda_{3_1}) =$ we five algebraic tori, all g	$\{z_1+z_3+z_1z_2z_3+$ given by fillings:	$1=0\}\subset \mathbb{C}^3$,
$T_1 = Spec\{$	$z_1^{\pm 1}, (1+z_1z_2)^{\pm 1}\}, T_2 = Sp_2$	$ec\{z_3^{\pm 1}, (1+z_3z_2)^{\pm 1}\},\$	$T_3 = \text{Spec}\{z_1^{\pm 1}, z_3^{\pm 1}\},$
T	$\bar{z}_4 = \operatorname{Spec}\{z_2^{\pm 1}, (1+z_1z_2)^{\pm 1}\},\$	$T_5={\sf Spec}\{z_2^{\pm 1},(1+$	$(z_3 z_2)^{\pm 1}$.
		$(T^*\mathbb{R}^2, \omega_{st})$	

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → のへで

ntroduction ೧೧೧	Symplectic topology	Microlocal invariants ○○○○○	The program
A few exar	nples		
 Trefoil Example and we ha T₁ = Spec{ 	$\begin{aligned} \text{cample: Then } \mathfrak{M}(\Lambda_{3_1}) &= \\ \text{ve five algebraic tori, all g} \\ z_1^{\pm 1}, (1+z_1z_2)^{\pm 1}\}, T_2 = \text{Specender} \end{aligned}$	$\{z_1 + z_3 + z_1 z_2 z_3 + 1 = 0\}$ iven by fillings: $c_{3}(z_3^{\pm 1}, (1+z_3 z_2)^{\pm 1}), T_3 = Spe$	$\mathbb{C}^{3},$ $z \in \{z_{1}^{\pm 1}, z_{3}^{\pm 1}\},$
Т	$\bar{z}_4 = \operatorname{Spec}\{z_2^{\pm 1}, (1+z_1z_2)^{\pm 1}\},$	$T_5 = \operatorname{Spec}\{z_2^{\pm 1}, (1+z_3z_2)^{\pm 1}\}.$	
		(T*R ² , ω _{st})	

 If β = (σ₁ · · · σ_{k-1})^{k+n}, then Λ_β is max-tb Legendrian (k, n)-torus link and has moduli 𝔐(Λ_β) ≅ Π^o_{k,n+k} ⊂ Gr(k, k + n), the top open positroid.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

ntroduction ລດດ	Symplectic topology	Microlocal invariant ೧೧೧●೧	s The program	
A few exa	mples			
• Trefoil E and we ha	xample : Then $\mathfrak{M}(\Lambda_{3_1}) =$ ave <i>five</i> algebraic tori, all g $\{z^{\pm 1}, (1+z_1, z_2)^{\pm 1}\}$ $T_2 = Spread 1$	${z_1 + z_3 + z_1 z_2 z_3 + z_1 z_2 z_3 + z_1 z_2 z_3 + z_1 z_2 z_2 + z_1 z_2$	$\{-1=0\} \subset \mathbb{C}^3,$ $T_2 = \operatorname{Spec}\{z^{\pm 1}, z^{\pm 1}\}$	
71 — Spec	$T_4 = \operatorname{Spec}\{z_2^{\pm 1}, (1+z_1z_2)^{\pm 1}\},\$	$T_{5} = \operatorname{Spec}\{z_{2}^{\pm 1}, (1 - z_{2}^{\pm 2})^{-1}\},$	$(z_1, z_3)^{\pm 1}$	

- If β = (σ₁ · · · σ_{k-1})^{k+n}, then Λ_β is max-tb Legendrian (k, n)-torus link and has moduli 𝔐(Λ_β) ≅ Π^o_{k,n+k} ⊂ Gr(k, k + n), the top open positroid.
- Let $u, w \in S_n$, then $\Lambda_{u,w} := \Lambda_{\beta(w)\beta(u^{-1}w_0)}$ has moduli $\mathfrak{M}(\Lambda_{u,w}) \cong \mathcal{R}_{u,w}^{\circ}$ the open Richardson variety. (here all up to frozens, cf. marked points)

ntroduction ၁၀၀	Symplectic topology	Microlocal invariants ೧೧೧●೧	The program	
A few exar	nples			
• Trefoil Ex and we ha	$cample$: Then $\mathfrak{M}(\Lambda_{3_1}) =$ we <i>five</i> algebraic tori, all	$= \{z_1 + z_3 + z_1 z_2 z_3 +$ given by fillings:	$1=0\}\subset \mathbb{C}^3$,	
$T_1 = Spec\{$	$z_1^{\pm 1}, (1+z_1z_2)^{\pm 1}\}, T_2 = S$	$pec\{z_3^{\pm 1}, (1+z_3z_2)^{\pm 1}\},\$	$T_3 = \text{Spec}\{z_1^{\pm 1}, z_3^{\pm 1}\},\$	
Т	$\bar{z}_4 = \operatorname{Spec}\{z_2^{\pm 1}, (1+z_1z_2)^{\pm 1}\}$	$, T_5 = { m Spec}\{z_2^{\pm 1}, (1+$	$(z_3 z_2)^{\pm 1}$ }.	

- If $\beta = (\sigma_1 \cdots \sigma_{k-1})^{k+n}$, then Λ_β is max-tb Legendrian (k, n)-torus link and has moduli $\mathfrak{M}(\Lambda_\beta) \cong \prod_{k,n+k}^{\circ} \subset \operatorname{Gr}(k, k+n)$, the top open positroid.
- Let $u, w \in S_n$, then $\Lambda_{u,w} := \Lambda_{\beta(w)\beta(u^{-1}w_0)}$ has moduli $\mathfrak{M}(\Lambda_{u,w}) \cong \mathcal{R}_{u,w}^{\circ}$ the open Richardson variety. (here all up to frozens, cf. marked points)
- For β algebraic, also wild character varieties. (now $T^*\Sigma$, cf. P.Boalch's work.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

First appearance of cluster algebras

Theorem (Simplified main result)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β . Then $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra and, in many cases, every cluster seed is known to come from a Lagrangian filling.

First appearance of cluster algebras

Theorem (Simplified main result)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β . Then $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra and, in many cases, every cluster seed is known to come from a Lagrangian filling.

A Lagrangian filling gives toric chart $(\mathbb{C}^*)^{b_1(L)} \subset \mathfrak{M}(\Lambda)$, but we need three more ingredients: *quivers, coordinates and transition functions.*

First appearance of cluster algebras

Theorem (Simplified main result)

Let $\Lambda_{\beta} \subset (\mathbb{R}^3, \xi_{st})$ be the Legendrian link associated to a positive braid word β . Then $\mathbb{C}[\mathfrak{M}(\Lambda_{\beta})]$ is a cluster algebra and, in many cases, every cluster seed is known to come from a Lagrangian filling.

A Lagrangian filling gives toric chart $(\mathbb{C}^*)^{b_1(L)} \subset \mathfrak{M}(\Lambda)$, but we need three more ingredients: *quivers, coordinates and transition functions.*

All these ingredients will be described symplectically: back to geometry!

The program ●00000

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Inspiration from Lagrangian Disk Surgeries

Recall **Lagrangian surgery**: inputs Lagrangian filling and disk. Outputs *another* Lagrangian filling and with disk. It is *involutive*.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Inspiration from Lagrangian Disk Surgeries

Recall **Lagrangian surgery**: inputs Lagrangian filling and disk. Outputs *another* Lagrangian filling and with disk. It is *involutive*.

1. The disks in orange and purple are Lagrangian.

The program ●00000

Inspiration from Lagrangian Disk Surgeries

Recall Lagrangian surgery: inputs Lagrangian filling and disk. Outputs *another* Lagrangian filling and with disk. It is *involutive*.

- 1. The disks in orange and purple are Lagrangian.
- 2. Any curve η intersecting $\gamma = \partial \Delta^2$ changes under Lagrangian disk surgery along Δ^2 to curve $\tau_{\gamma}(\eta)$ if $\eta \cdot \gamma > 0$. (It stays the same otherwise.)

The program ●00000

Inspiration from Lagrangian Disk Surgeries

Recall **Lagrangian surgery**: inputs Lagrangian filling and disk. Outputs *another* Lagrangian filling and with disk. It is *involutive*.

- 1. The disks in orange and purple are Lagrangian.
- Any curve η intersecting γ = ∂Δ² changes under Lagrangian disk surgery along Δ² to curve τ_γ(η) if η · γ > 0. (It stays the same otherwise.)
 If we encode this change via intersection quiver we get quiver mutation!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

L-compressible systems for Lagrangian fillings

Definition

A maximal L-compressible system for L is a collection of Lagrangian disks $\{D_1, \ldots, D_{b_1(L)}\}$ properly embedded in $T^*\mathbb{R}^2 \setminus L$ such that the embedded curves $\partial \overline{D}_1, \ldots \partial \overline{D}_{b_1(L)} \subset L$ are a basis of $H_1(L, \mathbb{Z})$.

ション ふぼ マイボン トレン ひょう

L-compressible systems for Lagrangian fillings

Definition

A maximal L-compressible system for L is a collection of Lagrangian disks $\{D_1, \ldots, D_{b_1(L)}\}$ properly embedded in $T^*\mathbb{R}^2 \setminus L$ such that the embedded curves $\partial \overline{D}_1, \ldots \partial \overline{D}_{b_1(L)} \subset L$ are a basis of $H_1(L, \mathbb{Z})$.

Example. A max-tb Legendrian link of isolated singularity $f : \mathbb{C}^2 \to \mathbb{C}$. Then a real morsification $f_{\mathbb{R}} : \mathbb{R}^2 \to \mathbb{R}$ gives a Lagrangian filling $L(f_{\mathbb{R}})$ and a maximal \mathbb{L} -compressible system.

(L is "Lagrangian Milnor fiber" and D_i are "vanishing thimbles".)
L-compressible systems for Lagrangian fillings

Definition

A maximal L-compressible system for L is a collection of Lagrangian disks $\{D_1, \ldots, D_{b_1(L)}\}$ properly embedded in $T^*\mathbb{R}^2 \setminus L$ such that the embedded curves $\partial \overline{D}_1, \ldots \partial \overline{D}_{b_1(L)} \subset L$ are a basis of $H_1(L, \mathbb{Z})$.

Example. A max-tb Legendrian link of isolated singularity $f : \mathbb{C}^2 \to \mathbb{C}$. Then a real morsification $f_{\mathbb{R}} : \mathbb{R}^2 \to \mathbb{R}$ gives a Lagrangian filling $L(f_{\mathbb{R}})$ and a maximal \mathbb{L} -compressible system.

(L is "Lagrangian Milnor fiber" and D_i are "vanishing thimbles".)

From \mathbb{L} -compressible systems to cluster seeds

Towards clusters. For each toric chart $T_L \subset \mathfrak{M}(\Lambda)$, such \mathfrak{D} gives:

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

From \mathbb{L} -compressible systems to cluster seeds

Towards clusters. For each toric chart $T_L \subset \mathfrak{M}(\Lambda)$, such \mathfrak{D} gives:

(i) \mathfrak{D} gives quiver in T_L via geometric intersection of its boundary curves.

From \mathbb{L} -compressible systems to cluster seeds

Towards clusters. For each toric chart $T_L \subset \mathfrak{M}(\Lambda)$, such \mathfrak{D} gives:

(i) \mathfrak{D} gives quiver in T_L via geometric intersection of its boundary curves.

(ii) \mathfrak{D} gives coordinates in T_L , a coordinate $A_i : T_L \longrightarrow \mathbb{C}^*$ per each $D_i \in \mathfrak{D}$.

From \mathbb{L} -compressible systems to cluster seeds

Towards clusters. For each toric chart $T_L \subset \mathfrak{M}(\Lambda)$, such \mathfrak{D} gives:

- (i) \mathfrak{D} gives quiver in T_L via geometric intersection of its boundary curves.
- (ii) \mathfrak{D} gives coordinates in T_L , a coordinate $A_i : T_L \longrightarrow \mathbb{C}^*$ per each $D_i \in \mathfrak{D}$.
- (iii) Changes under Lagrangian disk surgeries are "cluster A-mutations".

From \mathbb{L} -compressible systems to cluster seeds

Towards clusters. For each toric chart $T_L \subset \mathfrak{M}(\Lambda)$, such \mathfrak{D} gives:

- (i) \mathfrak{D} gives quiver in T_L via geometric intersection of its boundary curves.
- (ii) \mathfrak{D} gives coordinates in T_L , a coordinate $A_i : T_L \longrightarrow \mathbb{C}^*$ per each $D_i \in \mathfrak{D}$.
- (iii) Changes under Lagrangian disk surgeries are "cluster A-mutations".

Another use: L-compressible systems \mathfrak{D} give skeleta $L \cup \mathfrak{D}$ for $(T^* \mathbb{R}^2, \Lambda)$ and $\operatorname{End}(\mathfrak{D}^* \oplus L^*)$ generate $\mathfrak{W}(T^* \mathbb{R}^2, \Lambda)$. (\rightarrow bounded *t*-structures)

Introd	

Symplectic topolog

Microlocal invariants

The program 000000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

What we want and what we (will) have

Summarizing table of ingredients

Legendrian Λ

 \rightarrow Moduli space $\mathfrak{M}(\Lambda)$

Introduction	Symplectic topology ဂဂဂဂဂ	Microlocal invariants	The program ೧೧೧●೧೧
What we want	and what we (will) have	
	Summarizing tab	le of ingredients	
Legendrian Λ		Moduli space $\mathfrak{M}(\Lambda)$	
Lagrangian filling	g L of $\Lambda \longrightarrow$	Toric chart $T_L \subset \mathfrak{M}(\Lambda)$	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction ೧೧೧	Symplectic topology ဂဂဂဂဂ	Microlocal invariants	The program ೧೧೧●೧೧
What we wa	ant and what we	(will) have	
	Summarizing tak	ble of ingredients	
Legendrian	$\wedge \longrightarrow $	Moduli space $\mathfrak{M}(\Lambda)$	
Lagrangian	filling L of $\Lambda \longrightarrow$	Toric chart $T_L \subset \mathfrak{M}(\Lambda)$	
$\mathbb L extsf{-compress}$	ing system ${\mathfrak D}$ for L—>	Quiver $Q(\mathfrak{D})$ for T_L	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introd	
000	

Microlocal invariants

The program

What we want and what we (will) have

Summarizing table of ingredients

- Legendrian Λ \longrightarrow
- Lagrangian filling L of $\Lambda \longrightarrow$
- \mathbb{L} -compressing system \mathfrak{D} for $\mathbb{L} \longrightarrow \mathbb{Q}$ uriver $Q(\mathfrak{D})$ for T_{L}

Disk $D_i \in \mathfrak{D}$

- Moduli space $\mathfrak{M}(\Lambda)$
 - Toric chart $T_L \subset \mathfrak{M}(\Lambda)$

 - Function $A_i : T_i \longrightarrow \mathbb{C}^*$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Introduction ೧೧೧	Symplectic topology	Microlocal invariants	The program ೧೧೧●೧೧
What we w	ant and what we	(will) have	
	Summarizing ta	ble of ingredients	
Legendrian	$\Lambda \longrightarrow$	Moduli space $\mathfrak{M}(\Lambda)$	
Lagrangiar	filling L of $\Lambda \longrightarrow$	Toric chart $T_L \subset \mathfrak{M}(\Lambda)$	
$\mathbb L extsf{-compres}$	sing system \mathfrak{D} for L—>	Quiver $Q(\mathfrak{D})$ for T_L	
Disk $D_i \in$	$\mathfrak{D} \longrightarrow$	Function $A_i: T_i \longrightarrow \mathbb{C}^*$	

<u>We want</u>: $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is cluster algebra with a $(T_L, Q(\mathfrak{D}))$ as initial seed, and Lagrangian disk surgery as mutation. We must work on:

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Introduction ೧೧೧	Symplectic topology	Microlocal invariants	The program
What we w	vant and what we	(will) have	
	Summarizing ta	ble of ingredients	
Legendriar	$\Lambda \longrightarrow$	Moduli space $\mathfrak{M}(\Lambda)$	
Lagrangiar	filling L of $\Lambda \longrightarrow$	Toric chart $T_L \subset \mathfrak{M}(\Lambda)$	
$\mathbb L extsf{-compres}$	sing system ${\mathfrak D}$ for ${\mathsf L}{\longrightarrow}$	Quiver $Q(\mathfrak{D})$ for T_L	
Disk $D_i \in$	$\mathfrak{D} \longrightarrow$	Function $A_i : T_L \longrightarrow \mathbb{C}^*$	

<u>We want</u>: $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is cluster algebra with a $(T_L, Q(\mathfrak{D}))$ as initial seed, and Lagrangian disk surgery as mutation. We must work on:

*ロト *目 * * * * * * * * * * * * * * *

• Construct a filling L of A and an L-compressing system \mathfrak{D} for L.

Introduction ೧೧೧	Symplectic topology ဂဂဂဂဂ	Microlocal invariants	The program
What we v	vant and what we	(will) have	
	Summarizing t	able of ingredients	
Legendriar	ıΛ	Moduli space $\mathfrak{M}(\Lambda)$	
Lagrangia	$ filling \ L \ of \ \Lambda \longrightarrow $	Toric chart $T_L \subset \mathfrak{M}(\Lambda)$	
$\mathbb L$ -compres	sing system $\mathfrak D$ for L—>	Quiver $Q(\mathfrak{D})$ for T_L	
Disk $D_i \in$	$\mathfrak{D} \longrightarrow$	Function $A_i : T_I \longrightarrow \mathbb{C}^*$	

We want: $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is cluster algebra with a $(T_L, Q(\mathfrak{D}))$ as initial seed,

<u>We want</u>: $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is cluster algebra with a $(T_L, Q(\mathfrak{D}))$ as initial seed, and Lagrangian disk surgery as mutation. We must work on:

- Construct a filling L of A and an \mathbb{L} -compressing system \mathfrak{D} for L.
- Each function $A_i : T_L \longrightarrow \mathbb{C}^*$ ought to extend to a **global regular** function

 $A_i: \mathfrak{M}(\Lambda) \longrightarrow \mathbb{C}.$

Introduction ೧೧೧	Symplectic topology ဂဂဂဂဂ	Microlocal invariants	The progra ೧೧೧●೧೧
What we war	nt and what we	(will) have	
	Summarizing ta	able of ingredients	
Legendrian Λ		Moduli space $\mathfrak{M}(\Lambda)$	
Lagrangian fil	ling L of $\Lambda \longrightarrow$	Toric chart $T_L \subset \mathfrak{M}(\Lambda)$	
\mathbb{L} -compressing	g system \mathfrak{D} for $L\longrightarrow$	Quiver $Q(\mathfrak{D})$ for T_{l}	

<u>We want</u>: $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is cluster algebra with a $(T_L, Q(\mathfrak{D}))$ as initial seed, and Lagrangian disk surgery as mutation. We must work on:

- Construct a filling L of A and an \mathbb{L} -compressing system \mathfrak{D} for L.
- Each function $A_i : T_L \longrightarrow \mathbb{C}^*$ ought to extend to a **global regular** function

$$A_i: \mathfrak{M}(\Lambda) \longrightarrow \mathbb{C}.$$

• Surgeries along disks in $\mathfrak D$ induce mutation on *quiver* and *variables*.

Introduct ດດດ	ion Symplectic topology	Microlocal invariants ဂဂဂဂဂဂ	The progra
Wh	at we want and what we	(will) have	
	Summarizing tal	ole of ingredients	
	Legendrian $\Lambda \longrightarrow$	Moduli space $\mathfrak{M}(\Lambda)$	
	Lagrangian filling L of $\Lambda \longrightarrow$	Toric chart $T_L \subset \mathfrak{M}(\Lambda)$	
	$\mathbb L$ -compressing system $\mathfrak D$ for L \longrightarrow	Quiver $Q(\mathfrak{D})$ for T_L	

<u>We want</u>: $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is cluster algebra with a $(T_L, Q(\mathfrak{D}))$ as initial seed, and Lagrangian disk surgery as mutation. We must work on:

- Construct a filling L of A and an \mathbb{L} -compressing system \mathfrak{D} for L.
- Each function $A_i : T_L \longrightarrow \mathbb{C}^*$ ought to extend to a **global regular** function

$$A_i:\mathfrak{M}(\Lambda)\longrightarrow\mathbb{C}.$$

- Surgeries along disks in $\mathfrak D$ induce mutation on *quiver* and *variables*.
- Regularity of mutated μ_{Dj}(A_i) + generators of C[M(Λ)] are cluster. (Starfish lemma gives C[M(Λ)] = U, then need A = U. Also codim-2 argument.)

Introduction ೧೦೧	Symplectic topology	Microlocal invariants	The program ೧೧೧೧●೧

The Jagger-Richards Motto

Introd	

Symplectic topolog

Microlocal invariants

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

The Jagger-Richards Motto

This is successfully implemented for $\Lambda = \Lambda_{\beta}$, after due modifications.

• Fillings *L* always exists for $\Lambda = \Lambda_{\beta}$: weaves construct many of them.

Introd	

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

The Jagger-Richards Motto

- Fillings *L* always exists for $\Lambda = \Lambda_{\beta}$: weaves construct many of them.
- There are Λ_{β} for which no \mathbb{L} -compressing system \mathfrak{D} exists for any L.

The Jagger-Richards Motto

- Fillings *L* always exists for $\Lambda = \Lambda_{\beta}$: weaves construct many of them.
- There are Λ_{β} for which no \mathbb{L} -compressing system \mathfrak{D} exists for any L.
 - (i) Solution 1: relax condition in D to allow immersed Lagrangian disks. Require a minimal amount of immersed disks. (→ correct quiver) Immersed disks lead to non-vanishing A_i ∈ C[M(Λ)]. (→ frozen variables) Then ∃ L with these "partial" L-compressing systems D for Λ = Λ_β.

The Jagger-Richards Motto

- Fillings *L* always exists for $\Lambda = \Lambda_{\beta}$: weaves construct many of them.
- There are Λ_{β} for which no \mathbb{L} -compressing system \mathfrak{D} exists for any L.
 - (i) Solution 1: relax condition in D to allow immersed Lagrangian disks. Require a minimal amount of immersed disks. (→ correct quiver) Immersed disks lead to non-vanishing A_i ∈ C[M(Λ)]. (→ frozen variables) Then ∃ L with these "partial" L-compressing systems D for Λ = Λ_β.

The Jagger-Richards Motto

- Fillings *L* always exists for $\Lambda = \Lambda_{\beta}$: weaves construct many of them.
- There are Λ_{β} for which no \mathbb{L} -compressing system \mathfrak{D} exists for any L.
 - (i) Solution 1: relax condition in D to allow immersed Lagrangian disks. Require a minimal amount of immersed disks. (→ correct quiver) Immersed disks lead to non-vanishing A_i ∈ C[M(Λ)]. (→ frozen variables) Then ∃ L with these "partial" L-compressing systems D for Λ = Λ_β.
 - (ii) Solution 2: If β contains Δ², ∃ L with L-compressing system D. For general β, employ localization. (→ Bott-Samelson to braid varieties)

The Jagger-Richards Motto

This is successfully implemented for $\Lambda = \Lambda_{\beta}$, after due modifications.

- Fillings *L* always exists for $\Lambda = \Lambda_{\beta}$: weaves construct many of them.
- There are Λ_{β} for which no \mathbb{L} -compressing system \mathfrak{D} exists for any L.
 - (i) Solution 1: relax condition in D to allow immersed Lagrangian disks. Require a minimal amount of immersed disks. (→ correct quiver) Immersed disks lead to non-vanishing A_i ∈ C[M(Λ)]. (→ frozen variables) Then ∃ L with these "partial" L-compressing systems D for Λ = Λ_β.
 - (ii) Solution 2: If β contains Δ², ∃ L with L-compressing system D. For general β, employ localization. (→ Bott-Samelson to braid varieties)
- In either case, need to verify *global regularity*, changes under Lagrangian surgery and so on. Need **explicit constructions and computations**:

<u>Weaves</u> provide what is needed: build L, \mathfrak{D} , formulas for A_i and surgeries.

The Jagger-Richards Motto

This is successfully implemented for $\Lambda = \Lambda_{\beta}$, after due modifications.

- Fillings *L* always exists for $\Lambda = \Lambda_{\beta}$: weaves construct many of them.
- There are Λ_{β} for which no \mathbb{L} -compressing system \mathfrak{D} exists for any L.
 - (i) Solution 1: relax condition in D to allow immersed Lagrangian disks. Require a minimal amount of immersed disks. (→ correct quiver) Immersed disks lead to non-vanishing A_i ∈ C[M(Λ)]. (→ frozen variables) Then ∃ L with these "partial" L-compressing systems D for Λ = Λ_β.
 - (ii) Solution 2: If β contains Δ², ∃ L with L-compressing system D. For general β, employ localization. (→ Bott-Samelson to braid varieties)
- In either case, need to verify *global regularity*, changes under Lagrangian surgery and so on. Need **explicit constructions and computations**:

<u>Weaves</u> provide what is needed: build L, \mathfrak{D} , formulas for A_i and surgeries.

• All this, weaves and more, in the next lecture!

Introduction

Symplectic topol

Microlocal invariants

The program 00000

The end of the beginning.

Thanks a lot!

"BUT THIS IS THE SIMPLIFIED VERSION FOR THE GENERAL PUBLIC."