Mirron symmetry and enumerative gememetry of duster vavieties. (Pierrick Boussean, Universiby of Georgia) $/ 1 / 3$
Toley a tomowor: Miveon sym for deduter vavichices
Two mirron constructions \rightarrow Fock-Goncharov dulity (combinabloiel)
Gross-Siehet mirron symmetry (Enumerative geometry:

$$
\begin{aligned}
& (\text { Enumeraive geomeriry: } \\
& g=0 \text { Gromor-Witen invarients) } \\
& \log ^{(0 y} \text {) }
\end{aligned}
$$

[Main result:
a comparison between these two appraches
(If wook wth H. Argiiz 2206.10584)
Lat leduve: Doueldsom. Thomas invarinos of quivers vilh potenteres.
Moin result : a comeyondence with $g=0 \log G w$ invarionts.

i/ Gross-Siebect minion construction (sketch)
3/ Main result: comparison between $y /$ and $2 /$.
1/ Cluster vavebices.
Start with a seed s: finite rank free abloom jump

$$
\begin{aligned}
& N \simeq \mathbb{Z}^{n} \\
& \text { - basis }\left(e_{i}\right)_{i \in I} \text { of } N \\
& \text {. Shew- syn form } \\
& \text { w: } N \times N \rightarrow \mathbb{Z}
\end{aligned}
$$

Seals
Fix $e_{k}$$\rightarrow$ New seed: $\mu_{k}(s)$ mababion of s at e_{k} : same N, ω

$$
\begin{aligned}
& \text { same } N, \omega \\
& \text { Nawbasis } e_{i}^{r}= \begin{cases}e_{i}+\max \left(\omega\left(e_{i}, e_{k}\right), 0\right) e_{k} \\
-e_{k} & \text { if } i \neq k\end{cases} \\
& s \rightarrow \mu_{k}(s) \rightarrow \mu_{e}\left(\mu_{k}(s)\right) \rightarrow \ldots
\end{aligned}
$$

Cluster vavictices: union of brie $\left(\mathbb{C}^{+}\right)^{n}$
one spy for each mutated seed.

IC \bar{I} Only allow matrivins of unfromen indica.

$$
M=\operatorname{Hom}(N, \mathbb{Z}) \quad V_{i}=c_{e_{i}} \omega=\omega\left(e_{i},-\right) \in M
$$

$s e_{i} N \omega$

$$
v_{i} M
$$

x - denster vaviety $x=\bigcup \underbrace{\sec \mathbb{C}[N]}_{\text {is }}$
Clenter birational
transfoumations
$\left(\mathbb{C}^{\prime}\right)^{n}$ bow with chavaden lattice N
$\underbrace{2^{n} \mapsto z^{n}\left(1+z^{e k}\right)} \underbrace{-\left(v_{k}, n\right)}_{(-1-)} z^{n} z^{\text {dudity }} \begin{gathered}\text { chavacale } \\ \text { between }\end{gathered}$ betwreen MondN

X and t ave both Calati-Yau varieties Adent homonphic volume form.
$\left.\left(\mathbb{C}^{+}\right)^{n} \quad \Omega=\frac{d 2_{1}}{2_{n}} 1 \ldots \wedge \frac{d 2_{n}}{2_{n}}\right\rfloor$
\log Calubi-Yam varidices. (X, D) smorth prof I noumal coossing divison variedy/C

$$
U=X I D_{\kappa} \quad \text { varicty } / \mathbb{C} \quad \frac{V_{x}+D=0}{}
$$ onticommicel:

Ex: X_{Σ} smoth proj bouc
varidy, defined by. four Σ
D_{Σ} tric bormantry divison $/ \Sigma I_{s}$ anticonomial
$\left(X_{\Sigma}, D_{\Sigma}\right)$ is a log $C y$ pair

$$
U=X_{\Sigma} i D_{\Sigma}=\left(\mathbb{C}^{t}\right)^{n}
$$

E_{x} : Shart with $\left(X_{\varepsilon}, D_{\varepsilon}\right)$ tric. generd

Pick hypersurfice $H \subset D_{\Sigma}$ (codim 2 in X_{Σ})
$X:=$ blowrup of X_{Σ} along H.

D : strict trensform of D_{Σ} (X, D) is $\log C Y$.

$$
\begin{gathered}
U=x \backslash D \neq\left(\mathbb{C}^{r}\right)^{n} \\
U \\
\left(\mathbb{C}^{+}\right)^{n}
\end{gathered}
$$

Gross-Haching-Keel: claster vavieties can be obbuined that way.
At \sum fou in N contrining the rays $\mathbb{R}_{20} e_{i}$.
(smooth prof)
$\longrightarrow X_{\Sigma}$ smath proi tonis varicily

$$
\begin{aligned}
& H_{i}=\left\{1+2^{v_{i}}=0\right\} \subset D_{\Sigma_{i}}{ }_{U_{i i}} \\
& X=\mathcal{U l}_{H_{i}}\left(X_{\Sigma}\right) \quad D U_{A A}=X I D
\end{aligned}
$$

Only for
a non-compat
Similarly for x C7 uariety.

$$
\begin{aligned}
& \sum M^{M} \mathbb{R}_{20} v_{i} \\
& \left.H_{i}=\left\{I+z^{r_{i}}\right)^{\left|v_{i}\right|}=0\right\} \\
& \rightarrow\left(x^{\prime}, D^{\prime}\right) \quad U_{x}=X^{\prime} \mid D^{\prime}
\end{aligned}
$$

$\left[\begin{array}{rl}T_{h m} \text { (GHK) } \text { Uptr corlim2, } \frac{U_{t}}{} \simeq t \\ \underline{U_{x}} \simeq x\end{array}\right.$

$$
X_{\Sigma}=\mathbb{P}^{2} \times \mathbb{P}^{1}
$$

$\left(\mathbb{C}^{\prime}\right)^{2}$

Fock-Goucharor dualily:
Cluster varichices come in paiss it and X.

$$
\measuredangle \text { "Mirron"? }
$$

$$
x \mapsto x
$$

$$
\begin{aligned}
& x \mapsto x \\
& y \mapsto y(1+x)
\end{aligned}
$$

"del":

2/ Mirron symmetry constrution.
Misron
$\underset{\text { Cy vancity }}{X} \longrightarrow X^{v}$ mirros $_{\text {cy vich }}$
Sympletic
Syemenetry of $x \longleftrightarrow$ Complex geomity of X^{2}

$$
\begin{aligned}
& (X, D) \log C Y \text { pair } \\
& U=X I D \uparrow
\end{aligned} \begin{aligned}
& \text { Grost-Siebert: } \\
& \text { "generld mirros } \\
& \text { contruction" }
\end{aligned}
$$

Maximal (D cortinins a O-dim stratiom)

Antorntie of $\left(X_{\varepsilon_{1}} D_{\Sigma}\right)$ toric.
(x, D) ortained as blow -up.
Output

Uses enumerative of (X, D)
Gromor-Witten coments of rational carves in X with tangeny comdibions elong D.

3/C.mprisom.
FG duliby
(x, D)

"Eary" case: if x is offine
\rightarrow Murm Fwily x^{v}
$\operatorname{Tin}_{n}\left(\right.$ Wed $\left.-Y_{u}\right)$

Gonk: What abot the generd cate whoe x is not offine?

t
Shumed are a family contriming $A t$.
$A_{\text {prin: }} t$-cluster with principh corff t
$\downarrow \quad \downarrow \quad A \quad 1+t_{i}^{v_{i}}=0$
Spec $\mathbb{C}\left[N_{\text {af }}\right] \ni 1$

$$
t_{t}=1 \rightarrow A
$$

