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Motivation

Let A be afin. dim. K-algebra over a field K.
® Ko(proj A)r := Ko(proj A) ®z R: the real Grothendieck group.
® Each 6 € Ky(proj A)r gives an R-linear form

0: Kp(modA)r — R

via the Euler form Ky(proj A)r X Ko(mod A)g — R.
By using this duality, the following notions were introduced:
® (-semistable modules M € mod A by [King]

— Wall-chamber structures on Ky(proj A)r by [BST, Bridgeland)].

® Two numerical torsion pairs in mod A for each 6 by [BKT]
— TF equivalence on Ky(proj A)r by [A].

These two are strongly related to each other.
To study them, silting theory is useful.
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TF equiv. classes by presilting complexes

LetU = @:11 U; € K°(proj A) be 2-term presilting with U;: indec.
We set the presilting cone of U by

C*(U) := Z Rso[Ui] € Ko(proj A)g.
in1

Theorem [Briistle-Smith-Treffinger, Yurikusa, (A)]
For each U € 2-psilt A, C*(U) is a TF equivalence class.

However, presilting cones do not give all TF equivalence classes
if A'is not 7-tilting finite [Zimmermann-Zvonareva].

3/51



Non-rigid regions
We set the non-rigid region of Ky(proj A)r by

NR := Ko(proj A)r \ U Cc*(U).
Ue2-psilt A

In these talks, | will explain two approaches to study NR.
(1) Canonical decomp. 6 = EB?LI 6, in Ky(proj A) by [Derksen-Fei]
give TF equivalence classes .| R.o0; if A is E-tame.
® We can construct some TF equivalence classes in NR.
® Representation-tame algebras are always E-tame [GLFS].
(2) The non-rigid region NR can be described in terms of
2-term presilting complexes and the purely non-rigid region Ry.

® Ry is a certain closed subset of Ky(proj A)g.
® | have determined Ry in the case A is a special biserial algebra.
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Canonical decompositions

We use the presentation space for each 6 € Ky(proj A):
Hom(6) := Homu(PY, PY),
where 6 = [P{] - [P!] and add P N add P/ = {0}.
Each f € Hom(@) defines a 2- term complex
Py = (P" PY) € K°(proj A).
[Derksen-Fei] defined direct sums in Ky(proj A):

m m )
@91' : For general f € Ho:n(zlﬁl 0;), .
Hf,‘ S Hom(9,~), Pf = @i:l Pfi
This is called a canonical decomposition if each 6; is indecomposable.
Theorem [DF, Plamondon]

Any 6 € Ko(proj A) admits a unique canon. decomp. B, 6;
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Our results

We introduced E-tame algebras in our study:
A: E-tame : == V0 € Ky(projA), 6 @ 6.

All representation-tame algebras are E-tame [GLFS].

Main theorem of 1st talk [Al]

Assume that A is hereditary or E-tame.
Let 0 = P~ 6; be a canon. decomp. in Ky(proj A).
Then, C*(0) := 2.I" | R.00; is a TF equiv. class in Ko(proj A)g.

If 6; # 6, forany i # j in above, then 64, .. ., 6,, are lin. independent.
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Setting

Let A be afin. dim. algebra over an alg. closed field K.

proj A: the category of fin. gen. projective A-modules.

Py, Po, ..., P,: the non-iso. indec. proj. modules.

K®(proj A): the homotopy cat. of bounded complexes over proj A.
mod A: the category of fin. dim. A-modules.

S1, 89, ..., S, the non-iso. simple modules
(we may assume there exists a surj. P; — ;).

DP(mod A): the derived cat. of bounded complexes over mod A.
Ko(C): the Grothendieck group of C.
Ko(C)r := Ko(C) ®z R: the real Grothendieck group.
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The Euler form

Ko(proj A) and Ky(mod A) are free abelian groups.
Proposition (see [Happel])

(1) Ko(proj A) = Ko(K®(proj A)) = P, Z[P;].
(2) Ko(mod A) = Ko(DP(mod A)) = P, Z[Si].
(3) ([Pi].[S;]) = 6;, where

(-, -): Ko(projA) x Ko(mod A) — Z

is the Euler form.

These are naturally extended to the real Grothendieck groups.
Via the Euler form, each 0 € Ky(proj A)r induces the R-linear form

0 :=(0,-): Ko(mod A)r — R.
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Wall-chamber structures

Definition [King]
Let 6 € Ko(proj A)g.

(1) M € mod A: 6-semistable &=
O(M) = 0 and 6(N) > O for any quotient N of M.

(2) Wy = {all 8-semistable modules} c mod A.

Definition [Briistle-Smith-Treffinger, Bridgeland]
(1) For M € mod A\ {0}, set @y := {0 € Ko(projA)r | M € Wjy}.

(2) We consider the wall-chamber structure on Ky(proj A)r
whose walls are @, for all M € mod A \ {0}.

Remark

To get the wall-chamber structure,
it suffices to consider indec. modules.
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Example of walls

Let A = K(1 — 2), then the indec. modules are S, Py, Sj.

[P2]

—[P1] [P1]

There are 5 chambers.
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Example of walls

LetA=K(132).
[P,]

« R-(1,0)

« R-(0,1)

¢ Ry (i,—(+1) (i €Zsy)
e Ruyo-(i+1,-0) (i €Zyy)

* Ry-(1,-1)

—[P] [P1]

—[P;]

There are infinitely many chambers.
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TF equivalence

Definition [Baumann-Kamnitzer-Tingley]

Let 6 € Ko(proj A)g. . o
We define numerical torsion pairs (7 g, Fg) and (74, ¥ ¢) in mod A by

To:={M € modA | 6(N) > 0 for any quotient N of M},
Fo :={M € mod A | 6(L) < O for any submodule L # 0 of M},
Ty :={M € mod A | 6(N) > O for any quotient N # 0 of M},

Fo:={M € mod A | (L) < 0 for any submodule L of M}.

Definition
0,0 € Ky(proj A)r are TF equivalent ;&=

(?9’ 7:6) = (?0” 7:9’)’ (T’ ?9) = (7—” ?0’)'
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Example of TF equiv. classes

Let A = K(1 — 2), 52P

151 are the indec. A-modules.
Then, 7_’9 and ?9 are given as follows.

[P,] [P,]

o
o @™,

—[P,]

(e: belong, o: not belong)
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Example of TF equiv. classes

P

Let A = K(1 — 2), S, 151 are the indec. A-modules.

There are exactly 11 TF equivalence classes.

[P,]
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Walls and TF equiv. classes

Proposition [A]

Let 8 # 6’ € Ko(proj A)r, then TFAE.

(a) 8 and ¢’ are TF equivalent.

(b) W, is constant for 6” € [6, 6’].

(c) AS € brick A, [0, 0'] N Og is one point.

Example

If A= K(1Z332),thenthe TF equivalence classes are
* {0}
® Roo(i, —(i + 1)), Roo(i + 1, —i),
® Rog(i,—(i + 1)) + Rog(i + 1, (i +2)), Rug(i + 1, —i) + Rog(i + 2, —(i + 1)),
® Roo(l,-1)

where we consider all i € Zxy.
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Presilting complexes

Definition [Keller-Vossieck]

Let U = (U™! — U°) € KP(proj A) be a 2-term complex.

(1) U: presilting :&= Homgs (o) 4)(U, U[1]) = 0.

(2) U: silting :&= U: presilting, thickko(proj 4) U = KP(proj A).
2-psilt A := {basic 2-term presilting complexes}/=.

2-silt A := {basic 2-term silting complexes}/=.

Proposition [(1) Aihara, (2) Adachi-lyama-Reiten]

(1) VU € 2-psilt A, IT € 2-silt A s.t.
U is a direct summand of T'.

(2) U e2sitA & U e 2-psiltA, |U| = n.
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Presilting and func. fin. torsion pairs

For each U € 2-psilt A, we set

(T v, Fu) := CH'(vU), Sub H ' (vU)),
(7o, Fu) := (Fac H(U), HO(U)*).

Then, 7 € Ty and Fy € Fu.

Theorem [Smale, Auslander-Smalg, AIR]
Let U € 2-psilt A.
(1) (Tu. Fu), (T, Fu) are func. fin. torsion pairs.
(2) All func. fin. torsion(-free) classes are obtained in this way.
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Presilting cones

Let U = @D~ U; € 2-psilt A with U;: indec.

Proposition [Aihara-lyama]
[Uil,...,[Un] € Ko(proj A) are linearly independent.
If U € 2-silt A, they are a Z-basis of Ky(proj A).

Definition
We define the presilting cone C*(U) in Ky(proj A)r by

CH(U) = ) RoolUil.
i=1

Proposition [Demonet-lyama-Jasso]
If U # U’ € 2-psilt A, then C*(U) N C*(U’) = 0.
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Presilting cones are TF equiv. classes

Theorem (=): [Yurikusa, Briistle-Smith-Treffinger], (<): [A]
Let U € 2-psilt A.
Then, C*(U) is a TF equiv. class such that

ne C+(U) — ?77 :?U, ?77 :?U.

Theorem [A]

The following sets coincide.
® The set of chambers in the wall-chamber structures.
® The set of TF equiv. classes whose interiors are nonempty.
o {CHY(T)|T e 2-siltA}.
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Example of presilting and TF equiv. classes

LetA=K(132).

[P,]

© Ryp-((+1,—0) ({ €Zsy)
* Ry (L-D)

—[P1]

—[P,]

The TF equivalence classes in Ky(proj A)r are

e C*(U)forall U € 2-psilt A,

® R.o(1,—1) (this does not come from 2-psilt A).

[P1]
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Presentation spaces

Definition [Derksen-Fei]
Let 6 € Ko(proj A).
(1) Take P, P_ € proj A (unique up to iso.) such that
0 = [P+] —[P-] and add P, N add P_ = {0}.
(2) Hom(#) := Homu(P—, P,): the presentation space of 6.

(3) Foreach f € Hom(6), set P; := (P- IR P.) € K°(proj A)
(the terms except —1st and Oth ones vanish).

Hom(#) is an irreducible algebraic variety.

Convention

“Any general f € Hom(6) satisfies (P)” means
“there exists X ¢ Hom(#): nonempty and open (thus dense)
such that any f € X satisfies (P)”.
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Direct sums in Ky(proj A)
Definition [DF]

We say a direct sum @B, 6; holds in Ko(proj A) if

i=1

for general f € Hom (Z 0,-), 3f; € Hom(;), Py = @ Py.
i=1

In this case, we also write 3", 6; = P, 6.

This condition can be checked pairwisely.
Proposition [DF]
P, 0 = Vi#j, 3(f,g) € Hom(6;) x Hom(8,),

Hom(Py, Py[1]) =0, Hom(P,, Ps[1]) = 0.
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Canonical decompositions
Definition

6: indecomposable in Ky(projA) =
for any general f € Hom(6), Py € K®(proj A) is indec.

Theorem [DF, Plamondon]
Any 6 € Ky(proj A) admits a decomposition unique up to reordering

0= @ 0; (6;: indecomposable).
i=1

We call it the canonical decomposition of 6.
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Direct sums and TF equiv. classes

Theorem 1 [Al] (with Demonet)
Let P, 6; in Ko(proj A). Then,

neZR>09 — T ﬁ ?n=ﬁ(f79
i=1 i=1

i=1

Thus, forany i, 75, € 7, € T € T4, Fo, € T C Fyy C Fo,-
We can recover the following sign-coherence.

Proposition [Plamondon]

Let 0 ® 6" in Ko(projA), 6 = 3\, a;[P;]and 6’ = X7, al[P;].
Then, a,al > 0 for all i.

" Ifa; > 0andal <0,thenS; € 79 N For C Tgrgr N Forer = {0}.
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Canon. decomp. and TF equiv. classes

By Theorem 1, if 6 = @:’il 0; is a canon. decomp. in Ky(proj A), then
m
Cc* () = Z Rso6;
i=1

is contained in some TF equiv. class in Ky(proj A)g.
Is C*(0) really a TF equiv. class?
Theorem 2 [Al]
Assume that
® Ais a hereditary algebra; or
® Ais E-tame, i.e. 6 @ 0 holds for any 6 € Ky(projA).

If 0 = P~ 6; is a canon. decomp. in Ko(proj A),
then C*(0) is a TF equiv. class in Ky(proj A)g.
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E-tame algebras

Though it is not easy to check the E-tameness, we have the following.

Theorem [Geiss-Labardini-Fragoso-Schréer, (Plamondon-Yurikusa)]

Let A be representation-finite or tame.
Then, A is E-tame.

Why did we assume E-tameness?

Because our proof of Theorem 2 uses the following result.
Theorem [Fei]

If & € Ko(projA) and M € mod A, then TFAE.

(@) M e Fo.

(b) 3l € Z>1, 3f € Hom(18), Hom(Coker f, M) = 0.
Moreover, we may let [ = 1if 6 & 6.
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Example of Theorem 2

Let QO be an extended Dynkin quiver, and A := KQ.
® Consider an indec. module M € mod A in a regular homog. tube.
® Take the min. proj. resol. P} — P}/ — M — 0,
and setn := [P)'] - [P].
o £ :={U € 2-psitA|[U]®n}.
e [Ulen — [U]lc @y < HU), H'(vU) are regular.

Proposition

Under the setting above, the TF equiv. classes in Ky(proj A)r are
e C*(U)forall U € 2-psilt A and
e C*([Ul®n)=C*(U)+Ryonforal U € E.

In particular, all TF equiv. classes come from canon. decomp.
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Remark on Theorem 2

In general, even if A is E-tame,
Theorem 2 does not necessarily give all TF equiv. classes.

® We cannot obtain any TF equiv. class X c Ky(proj A)r
such that X N Ky(proj A) = @ from Theorem 2.

® The following gentle algebra admits a TF equiv. class
Rso(l —t,—1+2t,—t) foreach t € [0,1] \ Q:

a Y

A=K(1 2 3)/{ad, By).
B B
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Non-rigid regions
Recall that the non-rigid region of Ky(proj A)g is

NR = Ky(proj A)r \ U Cc*(U).
Ue2-psilt A

My 2nd talk deals with a nice decomposition of NR.

Strategy
We will define Ry > C*(U) for each U € 2-psilt A such that

KorojAye = || Ru,
Ue2-psilt A

NR= || ®\CTW)).
Ue2-psilt A
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Nice subsets including presilting cones

For U € 2-psilt A, we define Ny, Ry > C*(U) by

Ny = {0 € Ko(projA)r | Tu € T, Fu C Fo},
Ry == Ny \ U Ny,
Ve2-psilt; A\{U}

where 2-psilt;; A := {V € 2-psilt A | U is a direct summand of V}.
We call Ry the purely non-rigid region.

Main theorem of 2nd talk [Al]
We have

NR= [ ®e\Cr@)

Ue2-psilt A

= || @@ +NunRo\{0}).

Ue2-psilt A
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Example of non-rigid regions

a Y
For A =K(1 2 3)/{ad, By), NR is described as
B )

(Pi1-1P21 i

il P21-(Ps1 -

The red line is Ry.
Each blue segment is Ry \ C*(U) for some indec. U € 2-psilt A
(the upper or the lower endpoint is C*(U)).
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Open neighborhoods of presilting cones

Definition
Forany U € 2-psilt A, we set

Ny :={0 € Ko(projA)r | Tu € T, Fu C Fo}-

This is related to 7-tilting reduction by [Jasso].
Lemma
Let U,V € 2-psilt A.
(1) Ny is a union of TF equiv. classes.
(2) Ny is an open neighborhood of C*(U).
(3) Ny = {6 € Ko(proj A)z | Ty € T o, Fu C Fo}-
(4) U@ V: 2-term presilting &= NyNNy 0 — [V] € Ny.
In this case, Ny N Ny = Nygy.
(5) Ue€addV < Ny D Ny.
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Purely non-rigid regions

2-psilt; A := {V € 2-psilt A | U is a direct summand of V'}.
Definition
For U € 2-psilt A, we set

RU = NU \ U Nv.
Ve2-psilty; A\{U}

In particular, we call Ry the purely non-rigid region:

Ro=Ko(projA)e\ | )] M.
Ve2-psilt A\{0}

® R, is aclosed set, and 0 € Ry.

®* Ry={0} < NR =0 < Ais t-ilting finite.

® (Ry)uez-psitt 4 is a stratification of Ko(proj A)g.
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Decompositions of non-rigid regions

Theorem 3 [Al]

(1) Let U € 2-psilt A and 6 € Ry. L
Then, there uniquely exist 8; € C*(U) and 6, € Ny N Ry
such that 8 = 61 + 65.

(2) We have

NR= [ ®e\Cr@)

Ue2-psilt A

= U (C*(U) + ((Ny N Ro) \ {0})).

Ue2-psilt A

Thus, the non-rigid region is determined
by the 2-term presilting complexes and the purely non-rigid region.
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Example of Theorem 3

Let A = K( 1 —= 2 =2 3)/(as. By).
B 5

[P1]-[P2]

il P21-(Ps1 -

The red line is Ry, and the blue is the rest non-rigid region.
For U € 2-psilt A with [U] = (3, -2, 0),
Ny is the green triangle, and C*(U) is the point in it.
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Example of Theorem 3

Let A = K( 1 —= 2 =2 3)/(as. By).
B 5

(Pi1-1P21 i

il P21-(Ps1 -

The red line is Ry, and the blue is the rest non-rigid region.
For U € 2-psilt A with [U] = (3,0, -2),
Ny is the green triangle, and C*(U) is the point in it.
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Example of Theorem 3

Let A = K( 1 —= 2 =2 3)/(as. By).
B 5

Proposition
(1) RO = RZO(I’ _la O) + RZO(Oa 17 _1)
(2) Rp, = Ro(0,0,1) +Rso(1,=1,0), Rpy1y = Rag(0,0, —1) + Rx(1, 1,0),
Rpl = R>0(1, 0, 0) + RZ()(O, 1, —1), RPl[l] = R>0(—1, 0, 0) + RZ()(O, 1, —1).

(3) Forany k <[ € Z>y with gcd(k,[) =1,
there exist U, U_ € 2-psilt A such that

[Usl=(U-kx1,-1+2kF1,-k+1),

NUi N Ry = Rzo(l —k, =1l + 2k, —k),
Ry, =Roo(l—kx1, -1 +2kF1,-k+1)+Rxso(l — k, = + 2k, —k).

(4) For the other U € 2-psilt A, Ry = C*(U).
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Relationship with canon. decomp.

Definition
Let 0 € Ky(proj A).
e We say 6 is rigid if 3U € 2-psilt A, § € C*(U).
® We set 6,; as the max. rigid direct summand of 6.

For any 6 € Ko(projA) and U € 2-psilt A,
® e Ny & 3l €Zs;,|U]is adirect summand of /6.
® fe Ny « 3l eZsy, [U]lalb.

Corollary

Let 0 € Ky(proj A).
Then, 3l € Zs, Vm € Zsy, (ml); = m - (10),.
Moreover, we can let [ = 1 if A is E-tame.
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7-tilting reduction

Let U € 2-psilt A, and take its Bongartz completion 7' € 2-silt A.
Set B = By := Ends(H(T))/[H°(U)], then |B| + |U| = |A].

Theorem [Jasso]
There exists a bijection red: 2-psilt;; A — 2-psilt B.

Proposition
There exists an R-linear surj. 7: Ky(proj A)r — Ko(proj B)r such that

a(CT(V)) = C*(red(V)), 7(Ny) = Need(v), T(Ry) = Reeq(v)
in Ko(proj B)r for any V € 2-psilt;; A.
In particular, 7(Ry) = Ro(B), so
Ry = C*(U) < Biis t-ilting fin.
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Special biserial algebras

. @: The complete path algebra of a fin. quiver Q = (Qo, Q1).
e 1 c(0)? c KQ: atwo-sided ideal of KQ.
® The arguments before are valid for A = @/1

[Yuta Kimura, van Garderen].

Definition

A= @/I is called a complete special biserial algebra if

(a) I is generated by a finite set of paths and p — g (p, g: paths).
(b) Foreachi € Qy, there exist at most two arrows starting at i.
(c) Foreachi € Qy, there exist at most two arrows ending at i.
(d) Foreach a € O, there exists at mostone g € Q1 s.t. a8 ¢ I.
(e) Foreach a € Oy, there exists at mostone S € Q1 s.t. fa ¢ I.

We want to determine Ry for complete special biserial algebras.
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Gentle algebras

Definition
A= @/I is called a complete gentle algebra if
(a) A= @/I is a complete special biserial algebra.
(b) I is generated by paths of length 2.
(c) Foreach a € Q1, there exists at most one 8 € O
such that e is a path in Q and a8 € I.
(d) Foreach a € Q, there exists at most one 8 € O,
such that Ba is a path in Q and Sa € 1.

IfA= @/1 is @ complete special biserial algebra,
we can choose I C [ such that

A= KQ/I is a complete gentle algebra.
Then, A is a quotient algebra of A, so Ry(A) C Ry(A).
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Maximal nonzero paths

Definition
Let A = @/I be a complete gentle algebra.
® MP(A) := {paths p ¢ I of length > 1 s.t. Ya € Qy, ap, pa € I}.
® MP(A) := MP(A) U {¢; | i € Qy satisfying (x)};
(*): at most one arrow starting at i, and at most one arrow ending at i.
® Cyc(A) := {minimal cycles ¢ s.t. Vm > 1, ¢ ¢ I}.

For any path p ¢ I in Q, a string module M(p) € mod A is defined.

Theorem 4 [A]

Let A = @/1 be a complete gentle algebra.
Then, Ry = {6 € Ko(projA)r | (a), (b)}

(@) Vp € MP(A), M(p) € W.

(b) Yc € Cyc(A), (M (c)/soc M(c)) = 0.

42/51



Example of Theorem 4

Let A = K( 1 —= 2 =2 3)/(as. By).
B 5

In this case,
MP(A) = {ay, 86}, Cyc(A) = 0.
Thus, for 8 € Ko(proj A)g,

0 e Ry & M(ay), M(B5) € Wy
— 0 €Rso(1,-1,0) + R5p(0, 1, —1).
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Example of Theorem 4

Let A = K(1 == 2 7= 3)/(ay.6).
B 5

In this case,
MP(A) = {e1, e3}, Cyc(A) = {af, B, ¥, 6y}

We can use a complete representative set of Cyc(A)/{cyc. perm.}
instead of Cyc(A) in Theorem 4.
Thus, for 6 € Ky(proj A)g,

0 € Ry < M(er), M(e3) € Wy, 0(M()) =60(M(y)) =0
— 6=0.

Therefore, Ry = {0}, and #2-silt A < oo (A is “r-tilting finite”).

® For any complete special biserial algebra A,
2-silt A — 2-silt(A/(Cyc(A))) is a bij. [Yuta Kimura].
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Example of Theorem 4

1 M
a Y
Let A = K( C1 — 2 32) ) {ay, 58, A2, 112).

In this case,

MP(A) = 0, Cyc(A) = {aBA, BAa, A, Sy, Y b, 1oy }.
Thus, for 8 € Ky(proj A)g,

0eRy — O(M(ap))=60(M(y)) =0
— 0=R(1,-2,1).
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Main result for special biserial algebras

Let A = KQ/I be a complete special biserial algebra.
Fix I C I: anideal of KQ such that A = KQ/I is complete gentle.
Define Wg C mod A by

Wg = F”'[X(Wg (‘Wy Cc mod A).

For any path p admitted in A, M(p) € % if and only if
dqi, . . ., gn: paths admitted in A, Jay, ..., ap-1 € O,

D =q11 " @u-1Qm-19m, Vi, M(q;) € Wp.

Theorem 5 [A]

In above, we have Ry = {8 € Ky(proj A)r | (a), (b)}.

(@) Vp € MP(A), M(p) € ‘W,.

(b) V& € Cyc(A), 3d: a cyc. perm. of ¢ s.t. M(c?)/soc M(c?) € (Wg.
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Example of Theorem 5

a Y
LetA=K(1 /3 2 ~ 3)/{ad, By, ay, BS).

= a Y
Take the gentle algebra A = K( 1 B 2 . 3)/{ad, By).

In this case,
MP(A) = {ay, 85}, Cyc(A) = 0.
Thus, for 8 € Ko(proj A)g,

0 e Ry & M(ay), M(BJ) € ‘Wg

M(a), M(e3) € Wy or M(e1), M(y) € Wy;
M(B), M(e3) € Wy or M(e1), M(8) € ‘W,

— 0 eRsp(1,-1,0) UR5((0, 1, -1).

In this case, Ry is not convex.
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Ry and the sum of the simple modules

Set h := Y1 |[Si] € Ko(mod A).
If A is a complete gentle algebra, then we can check

2h e Z ZIM(p)] + Z Z[M(c)/soc M(c)].

peMP(A) ceCyc(A)

Corollary

Let A be a complete special biserial algebra.
Then, Ry is contained in the hyperplane Ker(-, h) C Ko(proj A)r.

Remark

If A is complete gentle, then Ry is a rational polyhedral cone.
If A is complete special biserial,
then Ry is a union of finitely many rational polyhedral cones.
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Connection with 7-tilting reduction

Let A = KQ/I be a (fin. dim.) special biserial algebra.
Fix U € 2-psilt A, and consider the algebra B = By.
Then, Wy := Ty N Fy is equiv. to mod By [Jasso].

Proposition
By is a (fin. dim.) special biserial algebra.

Set hy = Yxesimw, [X] € Ko(mod A).

Corollary [A]
Ry N'NR is contained in Ker(, hyy) € Ky(proj A)g.

Since 2-psilt A is at most a countable set,
NR is contained in a union of countably many hyperplanes of codim. 1.
Thus, the interior of NR is empty, i.e. A is g-tame.
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Application to Brauer graph algebras

Let A be the Brauer graph algebra of G = (V, E, m).

The simple A-modules are S, forall e € E.

For each v € V, take the cyclic order ey, ..., e; € E around v,
and set x, := Zle[Sei] € Ko(mod A).

Corollary [A]

In above, Ry = (,ev Ker(:, x,).

Thus, if Ry = {0}, then #V > #E, so G contains at most one cycle.
Any vertex with only one half-edge does not matter whether Ry = {0}.

¢ |f G is an odd cycle, then Ry = {0}.
e |f G is an even cycle, then Ry = R(1,-1,1,-1,...,1,-1).

Recovered Theorem [Adachi-Aihara-Chan]
A is t-tilting finite if and only if
G contains at most one odd cycle and no even cycle.
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Thank you for your attention.

s-asai@ist.osaka-u.ac.jp
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