Cluster structures on q-Painlevé systems via toric geometry

Yuma Mizuno (Chiba University)

Advances in Cluster Algebras 2024
2024/03/11

Outline

1 Geometric interpretation of mutations due to Gross-Hacking-Keel

2 The cluster modular groupoid (symmetry of cluster theory)

3 q-Painlevé systems

Review: mutations

- The mutation formula

$$
\begin{array}{r}
\mu_{k}^{*}: \operatorname{Frac} \mathbb{Z}\left[x_{1}^{\prime \pm 1}, \ldots, x_{n}^{\prime \pm 1}\right] \rightarrow \operatorname{Frac} \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \\
\mu_{k}^{*}\left(x_{i}^{\prime}\right):= \begin{cases}x_{k}^{-1}\left(\prod_{j=1}^{n} x_{j}^{\left[b_{j k}\right]_{+}}+\prod_{j=1}^{n} x_{j}^{\left[-b_{j k}\right]_{+}}\right) & \text {if } i=k \\
x_{i} & \text { if } i \neq k\end{cases}
\end{array}
$$

- How to prove that μ_{k}^{*} is well-defined?
- This reduces to prove the algebraic independence of $\mu_{k}^{*}\left(x_{i}^{\prime}\right)$.
- The most common explanation would be to use the fact that μ_{k}^{*} is an involution.
- But to be precise, can we use the property of μ_{k}^{*} before defining it?

Review: mutations

- We can actually prove that

$$
\mu_{k}^{*}: \mathbb{Z}\left[x^{\prime \pm}{ }_{1}^{ \pm}, \ldots, x^{\prime \pm}{ }_{n}\right]_{f_{k}^{\prime}} \rightarrow \mathbb{Z}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]_{f_{k}}
$$

is well-defined, where this is a map between localizations associated with $f_{k}:=1+\hat{y}_{k}$ with $\hat{y}_{k}:=\prod_{j=1}^{n} x_{j}^{b_{j k}}$

1. Literally, the mutation formula defines

$$
\mu_{k}^{*}: \mathbb{Z}\left[x^{\prime \pm}{ }_{1}^{\prime}, \ldots, x^{\prime \pm}\right] \rightarrow \mathbb{Z}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]_{f_{k}}
$$

2. To show that this induces a map from localization, we need to show that $\mu_{k}^{*}\left(f_{k}^{\prime}\right)$ is a unit.
3. This follows from $\mu_{k}^{*}\left(1+\hat{y}_{k}^{\prime}\right)=1+\hat{y}_{k}^{-1}=\hat{y}_{k}^{-1}\left(1+\hat{y}_{k}\right)$.

- Then we obtain the map between the fraction fields by using the fact that a localization of a localization is a localization.

Review: mutations

- Geometrically, the mutation map

$$
\mu_{k}^{*}: \mathbb{Z}\left[x^{\prime \pm}{ }_{1}, \ldots, x^{\prime \prime}{ }_{n}\right]_{f_{k}^{\prime}} \rightarrow \mathbb{Z}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]_{f_{k}}
$$

has the better interpretation than that between fraction fields.

- Recall that $\operatorname{Spec} \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]_{f_{k}} \cong\left(\mathbb{C}^{\times}\right)^{n} \backslash\left\{f_{k}=0\right\}$.
- Thus we have a birational map

$$
\mu_{k}:\left(\mathbb{C}^{\times}\right)^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n}
$$

that is an isomorphism on the open sets $\left(\mathbb{C}^{\times}\right)^{n} \backslash\left\{f_{k}=0\right\}$ and $\left(\mathbb{C}^{\times}\right)^{n} \backslash\left\{f_{k}^{\prime}=0\right\}$

- We can glue two algebraic tori $\left(\mathbb{C}^{\times}\right)^{n}$ by μ_{k} along these open subsets.

Mutations due to GHK

- Gross-Hacking-Keel (2015) found another interpretation of the glued space as a blowup of a toric varieties.

Convention

- From now on, we work in GHK convention.
- We focus on cluster Poisson variables
- y_{i} in Fomin-Zelevinsky
- X_{i} in Fock-Goncharov
- $z^{e_{i}}$ in Gross-Hacking-Keel

Setting of cluster theory

- A fixed data consists of
- a finite index set I
- a free-abelian (or just a torsion-free abelian) group N
- a skew-symmetric bilinear form $B: N \times N \rightarrow \mathbb{Z}$
- A seed $s=\left(e_{i}\right)_{i \in I}$ is a basis (or just a tuple) of N.
- A seed mutation $\mu_{k, \varepsilon}: s \rightarrow s^{\prime}$ for $k \in I, \varepsilon:$ sign, is defined by

$$
e_{i}^{\prime}= \begin{cases}\left.e_{i}+\left[\varepsilon B\left(e_{i}, e_{k}\right)\right)\right]_{+} e_{k} & \text { if } i \neq k \\ -e_{k} & \text { if } i=k\end{cases}
$$

- For any seed mutation $\mu_{k, \varepsilon}: s \rightarrow s^{\prime}$, we define a birational map

$$
\mathcal{X}\left(\mu_{k, \varepsilon}\right): \mathcal{X}_{s} \rightarrow \mathcal{X}_{s^{\prime}}
$$

where $\mathcal{X}_{s}:=\operatorname{Spec} \mathbb{C}[N]$ for any seed s, via the ring isomorphism

$$
\begin{aligned}
& \mathcal{X}\left(\mu_{k, \varepsilon}\right)^{*}: \mathbb{C}[N]_{1+z^{\varepsilon e_{k}}} \rightarrow \mathbb{C}[N]_{1+z^{\varepsilon e_{k}}} \\
& \mathcal{X}\left(\mu_{k, \varepsilon}\right)^{*}\left(z^{n}\right):=z^{n}\left(1+z^{\varepsilon e_{k}}\right)^{-B\left(n, e_{k}\right)}
\end{aligned}
$$

Mutations due to GHK

- We will work over \mathbb{C}.
- We want to extends $\mu_{k, \varepsilon}:\left(\mathbb{C}^{\times}\right)^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n}$ to a regular map.
- Choose a basis u_{1}, \ldots, u_{n} of N such that $B\left(u_{1}, e_{k}\right)=1, B\left(u_{i}, e_{k}\right)=0$ ($i \geq 2$), assuming this is possible.
- Set $x_{i}:=z^{u_{i}}$. (Remark: these are not cluster variables)
- Then $\mu_{k, \varepsilon}$ is expressed as

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(f\left(x_{2}, \ldots, x_{n}\right)^{-1} x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Mutations due to GHK (one direction case)

- Define $\mathbb{P}:=\mathbb{P}_{x_{1}}^{1} \times\left(\mathbb{C}^{\times}\right)_{x_{2}, \ldots, x_{n}}^{n-1}, D_{+}:=\left(x_{1}=0\right)$, and $D_{-}:=\left(x_{1}=\infty\right)$
- Define $Z_{ \pm}:=D_{ \pm} \cap(f=0)$, and let

$$
b_{ \pm}: \tilde{\mathbb{P}}_{ \pm} \rightarrow \mathbb{P}
$$

be a blowup of $Z_{ \pm}$.

- Then $\mu_{k, \varepsilon}:\left(\mathbb{C}^{\times}\right)^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n}$ extends to an isomorphism $\mu_{k, \varepsilon}: \tilde{\mathbb{P}}_{+} \rightarrow \tilde{\mathbb{P}}_{-}$.

Mutations due to GHK (one direction case)

proof. $\mu_{k, \varepsilon}: \mathbb{P} \rightarrow \mathbb{P}$ is given by

$$
\left(\left(x_{1}: y_{1}\right),\left(x_{2}, \ldots, x_{n}\right)\right) \mapsto\left(\left(x_{1}: f\left(x_{2}, \ldots, x_{n}\right) y_{1}\right),\left(x_{2}, \ldots, x_{n}\right)\right)
$$

The undifinedness along $Z_{+}=\left(x_{1}=f=0\right)$ is resolved by a blowup of Z_{+}, and we get a map $\mu_{k, \varepsilon}: \tilde{\mathbb{P}}_{+} \rightarrow \mathbb{P}$. This lifts to a $\mu_{k, \varepsilon}: \tilde{\mathbb{P}}_{+} \rightarrow \tilde{\mathbb{P}}_{-}$by the universality of blowup of Z_{-}. The inverse is given by the same argument for $\mu_{k,-\varepsilon}$.

Gluing tori vs blowup

- Let $U_{k}:=\tilde{\mathbb{P}}_{+} \backslash D_{+}$.
- Let X_{k} be a space obtained by gluing two $\left(\mathbb{C}^{\times}\right)^{n}$ by $\mu_{k, \varepsilon}$ along the open subsets $\left(\mathbb{C}^{\times}\right)^{n} \backslash\left\{1+z^{e_{k}} \neq 0\right\}$.

Proposition [Gross-Haking-Keel (2015)]

We have an open immersion $X_{k} \hookrightarrow U_{k}$ whose image is of codimension two.

- Codimension two is "small", so the space U_{k} obtained by a blowup can be regarded as another realization of the glued space.

Mutations due to GHK (general case)

- In general, we need to blowup $Z_{i,+}=D_{i,+} \cap\left(1+z^{e_{k}}=0\right)$ for each $i \in I$.
- To define $Z_{i,+}$, we need to partially compactify $\left(\mathbb{C}^{\times}\right)^{n}$ to get the boundary component $D_{i,+}$.
- This is achieved by consider the toric variety associated with the fan generated by $v_{i}:=\bar{e}_{i} \in \bar{N}$, where $\bar{N}:=N / \operatorname{Ker} B$.

Example

Let $N \cong \mathbb{Z}^{8}$. Define B by the left quiver.

Mutations due to GHK (general case)

- Define a fan $\Sigma_{+}:=\{0\} \cup\left\{\mathbb{R}_{\geq 0} v_{k}, \mathbb{R}_{\leq 0} v_{k}\right\} \cup\left\{\mathbb{R}_{\geq 0} v_{i} \mid i \neq k\right\}$
- Then we get the toric variety $\operatorname{TV}\left(\Sigma_{+}\right):=\bigcup_{\sigma \in \Sigma_{+}} \operatorname{Spec} \mathbb{C}\left[\sigma^{\vee} \cap N\right]$
- Let $D_{i,+} \subseteq \mathrm{TV}\left(\Sigma_{+}\right)$be the divisor corresponding to v_{i}.
- Set $Z_{i,+}:=D_{i,+} \cap\left(f_{i}=0\right)$, and let

$$
b_{+}: \widetilde{\mathrm{TV}}\left(\Sigma_{+}\right) \rightarrow \mathrm{TV}\left(\Sigma_{+}\right)
$$

be a blowup of $\bigcup_{i} Z_{i,+}$.

- The minus version is defined by the same argument for $s^{\prime}=\left(e_{i}^{\prime}\right)$.

Proposition [Gross-Haking-Keel (2015)]

$\mu_{k, \varepsilon}:\left(\mathbb{C}^{\times}\right)^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n}$ extends to an isomorphism $\mu_{k, \varepsilon}: \widetilde{\mathrm{TV}}\left(\Sigma_{+}\right) \rightarrow \widetilde{\mathrm{TV}}\left(\Sigma_{-}\right)$ outside a codimension 2 subset.

- As a consequence, $\widetilde{\mathrm{TV}}\left(\Sigma_{+}\right)$can be considered as a realization of the cluster variety up to codimension two.

Symmetry of cluster theory

- A symmetry of the cluster theory is well described by a groupoid.
- It is generated by the seed mutation and seed isomorphisms.
- A seed isomorphism $\sigma: s \rightarrow s^{\prime}$ consists of
- a bijection $\sigma^{\sharp}: I \rightarrow I$
- an isomorphism $\sigma^{b}: N \rightarrow N$ of abelian groups preserving the skew-symmetric form
- such that $\sigma^{b}\left(e_{i}\right)=e_{\sigma^{\sharp}(i)}^{\prime}$ for all $i \in I$

- For a seed isomorphism $\varepsilon \sigma: \mathbf{i} \rightarrow \mathbf{i}^{\prime}$, we define an isomorphism:

$$
\begin{gathered}
\mathcal{X}\left(\mu_{k, \varepsilon}\right): \mathcal{X}_{s} \rightarrow \mathcal{X}_{s^{\prime}} \\
\mathcal{X}\left(\mu_{k, \varepsilon}\right)^{*}: \mathbb{C}[N] \rightarrow \mathbb{C}[N], \quad z^{\sigma^{b}(n)} \mapsto z^{n} .
\end{gathered}
$$

Cluster modular groupoid

- The cluster modular groupoid, denoted by Seed, is a category generated by seed mutations and seed isomorphisms, modulo the relation

$$
\forall \mu, \mu^{\prime}: s \rightarrow s^{\prime}, \quad \mu \sim \mu^{\prime} \quad \text { if } \quad \mathcal{X}(\mu)=\mathcal{X}\left(\mu^{\prime}\right)
$$

- Objects: seeds
- Morphisms: formal compositions of seed mutations and seed isomorphisms, modulo cluster relations
- The inverse of $\mu_{k, \varepsilon}$ is $\mu_{k,-\varepsilon}$.
- We have a functor \mathcal{X} : Seed \rightarrow AlgTorus $_{\text {Birat }}$
- $\operatorname{Aut}_{\text {Seed }}(s)$ is called the cluster modular group at s.
- Remark: these definitions are slightly modified version of those in [Fock-Goncharov (2009)].

Let $s=\left(e_{1}, e_{2}\right)$ be a seed in $N=\mathbb{Z}^{2}$. Define $B\left(e_{1}, e_{2}\right)=-B\left(e_{2}, e_{1}\right)=1$. Then

$$
\operatorname{Aut}_{\text {Seed }}(s)=\left\langle\sigma \circ \mu_{1,+}\right\rangle \cong \mathbb{Z} / 5 \mathbb{Z}
$$

where $\sigma:\left(e_{1}, e_{2}\right) \mapsto\left(-e_{2}, e_{1}\right)$.

Reflections

- These are special elements in $\mathrm{Autseed}_{\text {Sed }}(s)$ that have order 2, which we call reflections.
- If $v_{i}=v_{j}$, then we have a seed isomorphism $(i, j) \in \operatorname{Aut}$ Seed (s).
- More generally, there exists $\mu: s \rightarrow s^{\prime}$ such that $v_{i}^{\prime}=v_{j}^{\prime}$, we have a seed isomorphism $\mu^{-1} \circ(i, j) \circ \mu \in \operatorname{Aut}_{\text {Seed }}(s)$.

Roots

- Define the set of roots

$$
\Delta_{s}:=\left\{\alpha \in \operatorname{Ker} B \mid \exists s^{\prime}, \exists \mu: s \rightarrow s^{\prime}, \exists i, j \in I, \alpha=e_{j}^{\prime}-e_{i}^{\prime}\right\}
$$

- For $\alpha \in \Delta_{s}$, we define the reflection $r_{\alpha}^{*} \in \operatorname{Aut}_{\text {Seed }}(s)$ by

$$
r_{\alpha}^{*}:=\mu^{-1} \circ(i, j) \circ \mu
$$

by choosing s^{\prime}, μ, i, j.

- r_{α}^{*} satisfies
$-r_{\alpha}^{*} \circ r_{\alpha}^{*}=\mathrm{id}$
$-r_{\alpha}(\alpha)=-\alpha$, where $r_{\alpha}=r_{\alpha}^{* *}: \operatorname{Ker} B \rightarrow \operatorname{Ker} B$ is the action given by the functor \mathcal{X}.

Conjecture

r_{α}^{*} does not depend on these choices.

Roots

Example

$\Delta_{s}=$ the set of real roots of type $D_{5}^{(1)}$

$$
\begin{gathered}
\alpha_{0}=e_{2}-e_{1}, \quad \alpha_{1}=e_{4}-e_{3}, \quad \alpha_{2}=e_{1}+e_{3} \\
\alpha_{3}=e_{5}+e_{7}, \quad \alpha_{4}=e_{6}-e_{5}, \quad \alpha_{5}=e_{8}-e_{7} \\
r_{0}^{*}=(1,2), \quad r_{1}^{*}=(3,4), \quad r_{2}^{*}=\mu_{1,-} \circ(1,3) \circ \mu_{1,+}, \\
r_{3}^{*}=\mu_{5,-} \circ(5,7) \circ \mu_{5,+}, \quad r_{4}^{*}=(3,4), \quad r_{5}^{*}=(7,8) .
\end{gathered}
$$

q-Painlevé systems

- When B is of rank two (in the sense of the linear algebra), then by GHK interpretation, the cluster Poisson variety is a family of blowups of toric surfaces.
- The intersection form on a surface induces the symmetric bilinear form on Ker B [GHK 2015].
- r_{α} in this setting is genuinely a reflection with respect to this form.
- If the roots system Δ_{s} is of "affine type", we have a nice theory.
- In fact, this is the theory of q-Painlevé systems, developed by Sakai from geometric viewpoint.

q-Painlevé systems

- Example: q-P $\mathrm{PII}_{\text {[Jimbo-Sakai 1996]: }}$

$$
\begin{aligned}
f(q t) f(t) & =b_{7} b_{8} \frac{g(q t)-q b_{1} t}{g(q t)-b_{3}} \frac{g(q t)-q b_{2} t}{g(q t)-b_{4}} \\
g(q t) g(t) & =b_{3} b_{4} \frac{f(t)-b_{5} t}{f(t)-b_{7}} \frac{f(t)-b_{6} t}{f(t)-b_{8}}
\end{aligned}
$$

- b_{1}, \ldots, b_{8} are constants satisfying $q=b_{3} b_{4} b_{5} b_{6} / b_{1} b_{2} b_{7} b_{8}$.
- They derived q - P_{VI} from the connection preserving deformation of a linear q-difference equation.
- Recently, physicists and mathematicians are actively studying relation to q-deformed conformal blocks, topological strings,...

From cluster algebras

- The time evolution is given by a birational map

$$
\begin{gathered}
\left(\begin{array}{llll}
b_{1} & b_{2} & b_{3} & b_{4} \\
b_{5} & b_{6} & b_{7} & b_{8}
\end{array} ; f, g\right) \stackrel{q-\mathrm{P}_{\mathrm{VI}}}{\longrightarrow}\left(\begin{array}{llll}
q b_{1} & q b_{2} & b_{3} & b_{4} \\
q b_{5} & q b_{6} & b_{7} & b_{8}
\end{array} ; \bar{f}, \bar{g}\right) \\
\bar{f}=\frac{b_{7} b_{8}}{f} \frac{\bar{g}-q b_{1}}{\bar{g}-b_{3}} \frac{\bar{g}-q b_{2}}{\bar{g}-b_{4}}, \quad \bar{g}=\frac{b_{3} b_{4}}{g} \frac{f-b_{5}}{f-b_{7}} \frac{f-b_{6}}{f-b_{8}}
\end{gathered}
$$

q-Painlevé systems

Proposition [Sakai 2001]

$q-\mathrm{P}_{\mathrm{VI}}$ gives an isomorphism $X_{b} \cong X_{\bar{b}}$ between algebraic surfaces

- X_{b} is called the space of initial values for q - P_{VI}, and obtained by an 8-points blowup from $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

- The isomorphism q - $\mathrm{P}_{\mathrm{VI}}: X_{b} \cong X_{\bar{b}}$ can be realized by a sequence of simpler isomorphisms.

$$
q-\mathrm{P}_{\mathrm{VI}}=\sigma_{2} \circ r_{2} \circ r_{1} \circ r_{0} \circ r_{2} \circ \sigma_{1} \circ r_{3} \circ r_{5} \circ r_{4} \circ r_{3}
$$

q-Painlevé systems

- $r_{0}, \ldots, r_{5}, \sigma_{1}, \sigma_{2}$ gives an action of the extended affine Weyl group of type $D_{5}^{(1)}$

- $r_{0}, r_{1}, r_{4}, r_{5}$ are just permutations (e.g. $\left.r_{0}=\left(b_{1} \leftrightarrow b_{2}\right)\right)$
- r_{3} : blowup of $(f, g)=\left(b_{5}, 0\right),\left(b_{7}, \infty\right)$, and then blowdown the strict transforms of $\left(f-b_{5}=0\right)$ and $\left(f-b_{7}=0\right)$ (similarly for r_{2})

q-Painlevé systems

- In other words, we have a decomposition $s_{3}=\mu^{-1} \circ(5,7) \circ \mu$.

- The map μ is a mutation!

Historical remark

- Okubo (2013): some elements of q-Painlevé systems (non-factorized form, that is, $q-\mathrm{P}_{\mathrm{VI}}$ itself for instance) can be realized by mutation sequences
- Bershtein-Gavrylenko-Marshakov (2018): all symmetries of q - P_{VI} can be realized by mutation sequences. They derivation of quivers is from cluster integrable systems [Goncharov-Kenyon 2013].
- M (2024): revealing geometric origin of these quivers, and clarifying the relation to Sakai's framework.

