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Review: mutations

e The mutation formula

wy, : Frac Z[x'icl, . ,x’:l] — FracZ[zT!, ... !
-1 - [bjk]+ s [=bjkl+ i
. Ty, (Hm +H3:- ) ifi=k
() = j=1 ! j=1 !

How to prove that i} is well-defined?

This reduces to prove the algebraic independence of p; (7).

The most common explanation would be to use the fact that p is an
involution.

But to be precise, can we use the property of 1} before defining it?
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Review: mutations

e We can actually prove that

+ + + +
Wy Zjx'] ,...,x’n]f); — LT, ..., x5
is well-defined, where this is a map between localizations associated with
— A A T bk
fie =1+ gx with g == J[;_, z;
1. Literally, the mutation formula defines

+ +
wi 2T, ] = 2, 2]y,
2. To show that this induces a map from localization, we need to show that
wi(f7.) is a unit.
3. This follows from pf(1+ ;) =1+ 9, " = 95 " (1 + ).
e Then we obtain the map between the fraction fields by using the fact that a
localization of a localization is a localization.
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Review: mutations

Geometrically, the mutation map

* + + + +
Wt Z[z'3 ,...,m’n]f); — ZxT, ..., x5

has the better interpretation than that between fraction fields.
Recall that Spec Clz5, ..., z5]f, = (C)™\ {fx = 0}.

Thus we have a birational map

pr < (C7)" == (C)"

that is an isomorphism on the open sets (C*)" \ {fx = 0} and
(C)"\{f; =0}

We can glue two algebraic tori (C*)™ by uy along these open subsets.
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Mutations due to GHK

o Gross-Hacking-Keel (2015) found another interpretation of the glued space as
a blowup of a toric varieties.
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Convention

e From now on, we work in GHK convention.
e We focus on cluster Poisson variables

— y; in Fomin-Zelevinsky
— X; in Fock-Goncharov
— 2% in Gross-Hacking-Keel
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Setting of cluster theory

e A fixed data consists of
— a finite index set [
— a free-abelian (or just a torsion-free abelian) group N
— a skew-symmetric bilinear form B: N x N — Z

e A seed s = (e;);es is a basis (or just a tuple) of N.
e A seed mutation py . : s — s for k € I, € : sign, is defined by

, {Gi + [EB(Bi, 6k))]+ek if 4 7é k

- —€k ifi==k
o For any seed mutation piz . : s — &', we define a birational map
X () 2 X = Xy
where X := Spec C[N] for any seed s, via the ring isomorphism
X(pre)* : C[N]1yzeer = C[N]ipzeex
X (o) (27) = 2" (1 + 2560 )~ Blmen)
] —



Mutations due to GHK

We will work over C.

e We want to extends i : (C*)™ --» (C*)™ to a regular map.

Choose a basis u1, ..., u, of N such that B(uj,e;) =1, B(u;,er) =0
(i > 2), assuming this is possible.

Set x; := z". (Remark: these are not cluster variables)

Then iy is expressed as

(T1,...,xpn) — (f(asg,...,mn)_lxl,xg,...,xn)
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Mutations due to GHK (one direction case)

o Define P:=PL x (C*)n! Dy == (21 =0), and D_ = (z1 = 00)

X250, Tn !

o Define Zy := D1 N (f =0), and let
bi : ]ibi — P

be a blowup of Z.
o Then g : (C*)™ ——» (C*)™ extends to an isomorphism i, . : P, — P_.
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Mutations due to GHK (one direction case)

D_ Dy
Z Z_
_—+,_ — |l o~ 1 -
;=0
P P, ~P_ P

proof. iy : P --+ P is given by
(w1 :1), (T2, wpn)) = (w12 f22, .. xn)yn), (T2, ..., 20))

The undifinedness along Z, = (1 = f = 0) is resolved by a blowup of Z, and
we get a map g : Py — P. This lifts to a py . : Py — P_ by the universality of
blowup of Z_. The inverse is given by the same argument for pj _..
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Gluing tori vs blowup

o Let Uy =P, \ D,.
o Let X} be a space obtained by gluing two (C*)™ by p . along the open
subsets (C*)™\ {1+ z°* # 0}.

Proposition [Gross-Haking-Keel (2015)]

We have an open immersion X — Uy whose image is of codimension two.

e Codimension two is “small”, so the space U obtained by a blowup can be
regarded as another realization of the glued space.
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Mutations due to GHK (general case)

e In general, we need to blowup Z; 1 = D; y N (1+ 2% =0) for each i € I.

e To define Z; 4, we need to partially compactify (C*)™ to get the boundary
component D; .

e This is achieved by consider the toric variety associated with the fan
generated by v; == &; € N, where N := N/ Ker B.

Example
Let N =2 Z%. Define B by the left quiver.

@
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&

VU7, Ug

A
Y
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Mutations due to GHK (general case)

e Define a fan X4 = {0} U {R>ovk, R<ovr} U {R>ov; | i # k}

o Then we get the toric variety TV(X,) := [, 5, Spec Cle¥Y N N]
e Let D; 1 CTV(X4) be the divisor corresponding to v;.

e Set Z; y ==D;  N(fi =0), and let

byt TV(Zy) — TV(S,)
be a blowup of |J; Z; +.
e The minus version is defined by the same argument for s’ = (e}).

Proposition [Gross-Haking-Keel (2015)]

Pie o (C€)™ ——» (C*)™ extends to an isomorphism (i . : T\\//(EJr) - W(E_)
outside a codimension 2 subset.

e As a consequence, TV (X ) can be considered as a realization of the cluster
variety up to codimension two.
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Symmetry of cluster theory

e A symmetry of the cluster theory is well described by a groupoid.
e It is generated by the seed mutation and seed isomorphisms.
e A seed isomorphism ¢ : s — s’ consists of
— a bijection o : I — I
— an isomorphism ¢” : N — N of abelian groups preserving the
skew-symmetric form
— such that o”(e;) = e;ﬁ( yforalliel

g

ot
[ ——— 1T
N————N

e For a seed isomorphism o : i — i/, we define an isomorphism:
X(Mk,s) c X — Xy
X(pre)® : C[N] = C[N], 27 ™ s 2
] 17/29



Cluster modular groupoid

e The cluster modular groupoid, denoted by Seed, is a category generated
by seed mutations and seed isomorphisms, modulo the relation

Vip'ts = s’ e~ i X(p) =X (W)
— Objects: seeds
— Morphisms: formal compositions of seed mutations and seed
isomorphisms, modulo cluster relations
The inverse of pg . is p, —e.
We have a functor & : Seed — AlgTorusg;,.¢

Autseed(s) is called the cluster modular group at s.

Remark: these definitions are slightly modified version of those in
[Fock-Goncharov (2009)].

Let s = (e1,e2) be a seed in N = Z2. Define B(ey,e3) = —B(ea,e1) = 1. Then
Autgeed(s) = (0 op1 +) = Z/5Z

where o : (e1,€e2) — (—ea, e1).

e e



Reflections

e These are special elements in Autgeea(s) that have order 2, which we call
reflections.

e If v; = v;, then we have a seed isomorphism (7, j) € Autgeed($).

o More generally, there exists 11 : s — s’ such that v, = v/, we have a seed
isomorphism 171 o (i, j) o 4 € Autgeea(s).

A !
VU3, V4 VU3, Uy
\\
\\\
123 \
Vs, Vg < > U7, U8 T Vg < > vk, v, vg
V1, V2 v/l’ v/2
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Roots

e Define the set of roots
Ag={acKerB|3s, Ipu:s—s,3i,jel, a=c;—e}

e For a € A, we define the reflection r’ € Autgeea(s) by

r¥i=puto(i,4)op

by choosing s', 11,1, j.
e r’ satisfies
- rror:=id
- rq(@) = —a, where 7, = r’* : Ker B — Ker B is the action given by
the functor &.
Conjecture

r% does not depend on these choices.
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Roots

Example

U3, U4
A ap Qs

V7,08 | |
Q1] — O — (3 — Oy

A
Y

Vs, Ve

Y
U1, V2

A, = the set of real roots of type Dél)

Qg =€z —€1, ] =e4—e3, Q2 =€+ e€3,

a3 =es+e7, 4 =e€g—€e5 Q5=eg— €7

(172)7 TT = (3a4)v ’I”; :/1'1,—0(1’3)0/1'1,-&-7
M5,— © (5a 7) O[5+, TZ = (374)a 7"; = (77 8)'
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g-Painlevé systems

e When B is of rank two (in the sense of the linear algebra), then by GHK
interpretation, the cluster Poisson variety is a family of blowups of toric
surfaces.

e The intersection form on a surface induces the symmetric bilinear form on
Ker B [GHK 2015].

e 1, in this setting is genuinely a reflection with respect to this form.

e If the roots system A is of “affine type”, we have a nice theory.

e In fact, this is the theory of g-Painlevé systems, developed by Sakai from
geometric viewpoint.

ok Hrirkok ik ok PO—
BN T BN sy B s EVpedsy B,
x *
By, B Ao B o BV B
*x * *x % * * * *
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g-Painlevé systems

Example: ¢-Py1 [Jimbo-Sakai 1996]:

9(qt) — gbit g(gt) — gbst
g9(at) —bs  g(qt) —ba
f(t) — bst f(t) — bet
f@) b7 f(t) —bs

b1,...,bg are constants satisfying ¢ = b3b4b5bg/b1babrbs.

flqt)f(t) = brbs

9(qt)g(t) = bsba

They derived g-Pvy1 from the connection preserving deformation of a linear
q-difference equation.

Recently, physicists and mathematicians are actively studying relation to
g-deformed conformal blocks, topological strings,...

] 24/29



From cluster algebras

e The time evolution is given by a birational map
bl b2 b3 b4 q-Pv1 qb1 qb2 b3 b4 o )
R o)
<b5 b by by fg) ’(qbs abs br b Y

f:b7b8§—qb1§—qb2 G=
f g—bs g—by’ g

bsby f—bs [ —bg
—b7 f—bg

~
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g-Painlevé systems

Proposition [Sakai 2001]

g-Pv1 gives an isomorphism X; = X3 between algebraic surfaces

e X, is called the space of initial values for ¢-Pv, and obtained by an 8-points
blowup from P! x P!.

(OO, b3) (OO,b4)

(bﬁa 0) ®

(b57 0) *

¢ (bs,00)

® (b77 OO)

(Ov bl) (Oa b2)

e The isomorphism ¢-Pv1 : X = Xj can be realized by a sequence of simpler
isomorphisms.

q—PVI20'207"207'1OT00T200'10T30T5OT‘407'3

e T



g-Painlevé systems

® 7o,. ..

D

, 75,071,092 gives an action of the extended affine Weyl group of type

Qo Qs

] — Qg — (x3 — Q4

® 10,r1,74,T5 are just permutations (e.g. 7o = (b1 <> b2))

e 13 blowup of (f,g) = (bs,0), (b7,0), and then blowdown the strict
transforms of (f — bs = 0) and (f — by = 0) (similarly for r3)

by*

P
i
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g-Painlevé systems

e In other words, we have a decomposition s3 = u~! o (5,7) o .

by 4 4 b
—
& bn T bn
C)(cm
$bhy ~—* by
<

o, +—— & bs

e The map u is a mutation!

S o
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Historical remark

e Okubo (2013): some elements of g-Painlevé systems (non-factorized form,
that is, ¢-Pv itself for instance) can be realized by mutation sequences

o Bershtein-Gavrylenko-Marshakov (2018): all symmetries of ¢-Py1 can be
realized by mutation sequences. They derivation of quivers is from cluster
integrable systems [Goncharov-Kenyon 2013].

e M (2024): revealing geometric origin of these quivers, and clarifying the
relation to Sakai's framework.
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