Two deformations of a Markov Equation and related topics

Takeyoshi Kogiso
Josai University

Advanced on Cluster algebras 2023
 Online

March 222023

Contents

(1) Introduction
(2) Local functional equations and Prehomogeneous vector spaces

- Local functional equation
(3) Castling transform of prehomogeneous vector spaces and t-deformation of Markov equation
- t-Deformations of Markov triples
(4) Markov equations, continued fractions and their properties and a certain q-deformation
- Elementary properties of Markov triples
- q-Deformations of Markov triples
- Elementary properties of continued fractions
- q-Analogue of continued fractions
(5) q-Deformation of Markov triples and Markov equations
(6) Future Problems
(7) References

Introduction

In this talk, I will talk about two kinds of deformations of a Markov equation. 1st. kind of deformation (we call it t-defrmation) of Markov equation is related to Castling transformation of t-dimensional prehomogeneous vector spaces. 2 nd.. kind of deformation is related to q-defrmation of rational numbers introduced by Morier-Genoud and Ovsienko, that is connected to knot theory, hyperbolic geometry, Cluster algebra.

What is Local Functional Equation(=LFE) for a pair of polynomials?

\S What is a local functional equation of pair of polynomials.

What is Local Functional Equation(=LFE) for a pair of polynomials?

Let $\left(P, P^{*}\right)$ be a pair of homogeneous polynomials in n variable of degree d with real coefficients.
It is interesting problem both in Analysis and in Number Theory to find the following "Local Functional equation" = LFE (avrebiation):
For $\{x \in V \mid P(x) \neq 0\}_{\mathbb{R}}=\bigcup_{i=1}^{\nu} \Omega_{i}$:decomposition to connected components.

$$
\begin{equation*}
\widehat{|P(x)|_{i}^{s}}\left(=\text { Fourier tr. of }|P(x)|_{i}^{s}\right)=\sum_{j=1}^{\nu} \gamma_{i j}(s)\left|P^{*}(y)\right|_{j}^{-\frac{n}{d}-s} \tag{*}
\end{equation*}
$$

where $d=\operatorname{deg} . P=\operatorname{deg} \cdot P^{*},|P(x)|_{i}:=\left\{\begin{array}{cc}|P(x)| & \left(x \in \Omega_{i}\right) \\ 0 & \text { otherwise }\end{array}\right.$

Remark

$\widehat{\left.P(x)\right|_{i} ^{s}}\left(=\right.$ Fourier tr. of $\left.|P(x)|_{i}^{s}\right)=\sum_{j=1}^{\nu} \gamma_{i j}(s)\left|P^{*}(y)\right|_{j}^{-\frac{n}{d}-s} \quad(*)$ $\partial^{m} f=\frac{\partial^{m_{1}+\cdots+m_{n}}}{\partial x_{1}^{m_{1}} \ldots \partial x_{n}^{m_{n}}}$ for $\forall m=\left(m_{1}, \ldots m_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$
$\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right):=\left\{f\left|\sup _{x}\right| Q(x) \partial^{m} f \mid<\infty\right.$ for \forall polynomial $\left.Q(x)\right\}$ $\widehat{\varphi}(y)=\int_{\mathbb{R}^{n}} \varphi(x) \exp (2 \pi i\langle x, y\rangle) d x$:Fourier trans.form of φ $\int_{*}|P(x)|^{s} \hat{\varphi}(x) d x=\sum_{* *}($ Gamma-factor $) \times \int_{*}\left|P^{*}(y)\right|^{-s-\frac{n}{d}} \varphi(y) d y$
as a distribution
$\zeta(\varphi, s)=\int_{*}|P(x)|^{s} \varphi(x) d x$: local zeta function(zeta distribution)
$\left(^{*}\right)$ is also called FE of zeta distribution (local zeta function).

Classical examples

Example 1 : (FT of Positive def. quadratic forms)

$\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{s-\frac{n}{2}}=\pi^{-2 s+\frac{n}{2}} \Gamma(s) \Gamma\left(s-\frac{n-2}{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)^{-s}$

Example2 : (FT of Determinant)

$$
\begin{aligned}
\mid \widehat{\left.\operatorname{det} X\right|^{s}-n} & =(2 \pi)^{-n s}(2 \pi)^{\frac{n(n-1)}{2}} 2^{n} \cos \left(\pi \frac{s}{2}\right) \cdots \cos \left(\pi \frac{(s-n+1)}{2}\right) \\
& \times \Gamma(s) \Gamma(s-1) \cdots \Gamma(s-n+1)|\operatorname{det} Y|^{-s}
\end{aligned}
$$

For the case of $n=1$, this is corresponds to Riemmann zeta function as follows:
$\zeta(1-s)=(2 \pi)^{-s} \Gamma(s) 2 \cos \left(\frac{\pi s}{2}\right) \zeta(s)$

Examples of LFE coming from PV-theory

These examples are coming from relative invarinats of prehomogeneous vector spaces. In simplest case, I will explain local functional equation coming from PV-theory.

Examples of LFE coming from PV-theory

Real PV $\left(G L(1, \mathbb{R}) \times S O(p, q), \Lambda_{1}, \mathbb{R}_{p, q}\right)$ with a relative invariant $P^{*}=P=\sum_{i=1}^{p} x_{i}^{2}-\sum_{j=p+1}^{p+q} x_{j}^{2}$ has the following LFEs
(1)If $(p, q)=(n, 0)$,
$\widehat{|P|^{s}}=-\pi^{2 s+\frac{n}{2}+1} \Gamma(s+1) \Gamma\left(s+\frac{n}{2}\right) \sin (s \pi)|P|^{-s-\frac{n}{2}}$

Example2 of LFE coming from PV-theory

$$
\begin{aligned}
& (2)(p, q)=(n-1,1), \\
& {\left[\frac{|P|_{+}^{s}}{\left\lvert\, \frac{|P|^{s}-+}{|P|_{--}^{s}}\right.}\right]=\pi^{-2 s-\frac{p+q}{2}-1} \Gamma(s+1) \Gamma\left(s+\frac{p+q}{2}\right)}
\end{aligned}
$$

$$
\times\left[\begin{array}{ccc}
-\cos (s \pi) & -\cos \left(\frac{n \pi}{2}\right) & -\cos \left(\frac{n \pi}{2}\right) \\
\frac{1}{2} & \frac{1}{2} \mathrm{e}\left[-\frac{2 s+n}{4}\right] & \frac{1}{2} \mathrm{e}\left[\frac{2+n}{4}\right] \\
\frac{1}{2} & \frac{1}{2} \mathrm{e}\left[\frac{2 s+n}{4}\right] & \frac{1}{2} \mathrm{e}\left[-\frac{2 s+n}{4}\right]
\end{array}\right]\left[\begin{array}{c}
|P|_{+}^{-s-\frac{p+q}{2}} \\
|P|_{-}^{-s-\frac{p+q}{2}} \\
|P|_{--}^{-s-\frac{p+q}{2}}
\end{array}\right]
$$

Example2 of LFE coming from PV-theory

(3) If $p, q \geq 2$,

$$
\begin{aligned}
& \left.\mid \widehat{\mid \overrightarrow{\left.P\right|_{-} ^{s}}}\right]=\pi^{-2 s-\frac{p+q}{2}-1} \Gamma(s+1) \Gamma\left(s+\frac{p+q}{2}\right) \\
& \\
& \quad \times\left[\begin{array}{cc}
-\sin \pi\left(s+\frac{q}{2}\right) & \sin \left(\frac{\pi p}{2}\right) \\
\sin \left(\frac{\pi q}{2}\right) & -\sin \pi\left(s+\frac{p}{2}\right)
\end{array}\right]\left[\begin{array}{c}
|P|_{+}^{-s-\frac{p+q}{2}} \\
|P|_{-}^{-s-\frac{p+q}{2}}
\end{array}\right]
\end{aligned}
$$

Tree of Castling trasnformations of PVs

§ Castling transform of Prehomogeneous vector spaces and t-Deformation of Markov triples.

Tree of Castling trasnformations of PVs

Grassmann duality

$$
\wedge^{k} V \cong\left(\wedge^{n-k} V\right)^{*} \cong \wedge^{n-k}\left(V^{*}\right)
$$

The transform coming from this Grassmann duality is called Castling transform of vector spaces
In particular, Castling transfroms preserve prehomogenety! (Castling transform is introduced by Mikio Sato and Takuro Shintani.)

Tree of Castling trasnformations of PVs

```
Example
```



```
(3, 1, 1, 1)
#(castling transform)
```



```
(3, 2, 1, 1)
#(castling transform)
(SO(2)\timesGL(2)\timesGL(5)\timesGL(1),\rho\otimes\mp@subsup{\Lambda}{1}{}\otimes\mp@subsup{\Lambda}{1}{}\otimes\mp@subsup{\Lambda}{1}{},V(3)\otimesV(2)\otimesV(5)\otimesV(1))\leftrightarrow
(3, 2, 5, 1)
There are two castling transforms for this.
One is (3, 2, 5, 1) =>(3,13,5,1)
Another is (3, 2, 5, 1) =>(3,2,5, 29)
```


Tree of Castling trasnformations of PVs

Here we explain the notation:
for example, 3-dimensional Prehomogeneous vector space
$(S O(3) \times G L(1) \times G L(1) \times G L(1), V(3) \otimes V(1) \otimes V(1) \otimes V(1))$ and $(S L(2) \times G L(1) \times G L(1) \times G L(1), S y m(2) \otimes V(1) \otimes V(1) \otimes V(1))$ corresponds to (3, 1, 1, 1)
A diagram showing the tree growing from bottom to top with CT is on the next page.

Tree of Castling trasnform. for 3-dim PV and Markov tree

Remark(Markov number and Castling transform of PV)

Tree of Castling trasnformations of PVs

For the t-dimensional representation space, the diagram on the next page shows the tree that grows from bottom to top for Castling transformation.

Castling transform of prehomogeneous vector spaces and t-Deformation of Markov triples

Castling transform of prehomogeneous vector spaces and t-Deformation of Markov triples

where

$$
\begin{aligned}
& f_{2}(t)=t^{2}-t-1 \\
& f_{3}(t)=t^{4}-2 t^{3}+t-1, \\
& f_{4}(t)=t^{7}-3 t^{6}+t^{5}+2 t^{4}+t^{3}-t^{2}-t-1, \\
& f_{5}(t)= \\
& t^{14}-6 t^{13}+11 t^{12}-2 t^{11}-9 t^{10}-4 t^{9}+10 t^{8}+7 t^{7}-2 t^{6}-7 t^{5}-3 t^{4}+t^{3}+2 t^{2}+t-1, \\
& f_{6}(t)=t^{28}-12 t^{27}+58 t^{26}-136 t^{25}+127 t^{24}+56 t^{23}-126 t^{22}-158 t^{21}+ \\
& 229 t^{20}+196 t^{19}-158 t^{18}-314 t^{17}+34 t^{16}+294 t^{15}+146 t^{14}-142 t^{13}- \\
& 213 t^{12}-26 t^{11}+116 t^{10}+90 t^{9}-9 t^{8}-45 t^{7}-23 t^{6}+5 t^{5}+9 t^{4}+3 t^{3}-t^{2}-t-1, \\
& f_{3 a}(t)=t^{5}-2 t^{4}+2 t+1, t^{5}-2 t^{4}-t^{2}+2 t+1, \\
& f_{2 a}^{(1)}(t)=t^{6}-2 t^{5}-2 t^{4}+4 t^{3}-t^{2}-t-1, \\
& \left(f_{2 a}^{(1)}\right)_{a}(t)=t^{9}-3 t^{8}-t^{7}+8 t^{6}-t^{5}-6 t^{4}-2 t^{3}+3 t^{2}+3 t-1, \\
& \left(f_{2 a}^{(1)}\right)_{b}(t)=t^{10}-3 t^{9}-2 t^{8}+11 t^{7}-t^{6}-12 t^{5}+2 t^{4}+3 t^{2}+1, \\
& f_{2 a}^{(2)}(t)=t^{12}-4 t^{11}+16 t^{9}-10 t^{8}-22 t^{7}+15 t^{6}+14 t^{5}-5 t^{4}-6 t^{3}+t-1, \\
& f_{3 a a}(t)=t^{4}-t^{3}-3 t^{2}+2 t+1
\end{aligned}
$$

Castling transform of prehomogeneous vector spaces and t-Deformation of Markov triples

In this diagram, Pick up subtree

$$
\left(t, f_{w(a, b)}(t), f_{w(a, b) w^{\prime}(a, b)}(t), f_{w^{\prime}(a, b)}(t)\right)
$$

starting form

$$
\left(t, f_{a}(t), f_{a b}(t), f_{b}(t)\right):=\left(t, t^{2}-t-1, t-1\right),
$$

where Christoffel $a b$-words $w(a, b), w(a, b) w^{\prime}(a, b), w^{\prime}(a, b)$ means triplet of t-polynomials.
Inother words,

$$
\left(t, f_{w(a, b)}(t), f_{w(a, b) w^{\prime}(a, b)}(t), f_{w^{\prime}(a, b)}(t)\right)
$$

parametrized by Christoffel $a b$-words.
for example, Castling transform of $\left(t, f_{a}(t), f_{a b}(t), f_{b}(t)\right)$ at $f_{a b}(t)$ is $\left(t, f_{a}(t), f_{a b}(t), t f_{a}(t) f_{a b}(t)-f_{b}(t)\right)$ and we put $t f_{a}(t) f_{a b}(t)-f_{b}(t)=f_{a^{2} b}(t)$. Thus we can consider a triplet $\left(f_{a}(t), f_{a^{2} b}(t), f_{a b}(t)\right)$ parametrized by Christoffel $a b$-word ($a, a^{2} b, a b$).

Castling transform of prehomogeneous vector spaces and t-Deformation of Markov triples

Tree of $\left\{\left(f_{w(a, b)}(t), f_{w(a, b) w^{\prime}(a, b)}(t), f_{w^{\prime}(a, b)}(t)\right)\right\}_{\left(w(a, b), w(a, b) w^{\prime}(a, b), w^{\prime}(a, b)\right) \text { is a triple of Christoffel }, ~}$

t-Deformations of Markov triples

Theorem([K, arXiv2008.12913v3])

A triplet $\left(f_{w}(t), f_{w w^{\prime}}(t), f_{w^{\prime}}(t)\right)$ of polynomials associated to Christoffel ab-word triple $\left(w, w w^{\prime}, w^{\prime}\right)$, then $\left(f_{w}(t), f_{w w^{\prime}}(t), f_{w^{\prime}}(t)\right)$ is a solution of the following equation:

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}+(t-3)=t x y z \tag{1}
\end{equation*}
$$

Elementary properties of Markov triples

$\oint \S$ Elementary properties of Markov triples

Markov triple, Markov tree

Integer-solution (x, y, z) of equation $x^{2}+y^{2}+z^{2}=3 x y z$ is called Markov triple.

Remark: Markov conjecture: The maxima of each triplet are all different.

Christoffel $a b$-words and Markov triples

Christoffel $a b$-words and Markov triples

Theorem(Cohn cf. [Bombieri], [Aigner])
$A:=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right), B:=\left(\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right) \in S L(2, \mathbb{Z})$
$\left(w(A, B)_{1,2},\left(w(A, B) w^{\prime}(A, B)\right)_{1,2}, w^{\prime}(A, B)_{1,2}\right)=$
$\left(\frac{1}{3} \operatorname{tr}(w(A, B)), \frac{1}{3} \operatorname{tr}\left(w(A, B) w^{\prime}(A, B)\right), \frac{1}{3} \operatorname{tr}\left(w^{\prime}(A, B)\right)\right)$
is a Markov triple for Christoffel $a b$-words $\left(w(a, b), w(a, b) w^{\prime}(a, b), w^{\prime}(a, b)\right)$.

Continued fractions and their properties

$\oint \S$ Continued fractions and their properties

Continued fractions and their properties

Well known properties for continued fractions: For $\frac{r}{s} \in \mathbb{Q}$, we assume $\frac{r}{s}>1$ and $\operatorname{gcd}(r, s)=1$,

$$
\begin{aligned}
\frac{r}{s}= & c_{1}-\frac{1}{c_{2}-\frac{1}{\ddots--\frac{1}{c_{k}}}}=a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}+\frac{1}{a_{2 m}}} \\
& =\left[\left[c_{1}, c_{2}, \ldots, c_{k}\right]\right] \quad=\left[a_{1}, a_{2}, \ldots, a_{2 m}\right]
\end{aligned}
$$

Continued fractions and their properties

Example

$\frac{19}{7}=[2,1,2,2]=[[3,4,2]]$
For a regular continued fraction, if $a_{n} \neq 1$, $\left[a_{1}, \ldots, a_{n-1}, a_{n}\right]=\left[a_{1}, \ldots, a_{n-1}, a_{n}-1,1\right]$

We can asuume $n=$ even $=2 m$
Notations:
$N\left[a_{1}, \ldots, a_{2 m}\right]=\left[a_{1}, \ldots, a_{2 m}\right]$-Numerator
$D\left[a_{1}, \ldots, a_{2 m}\right]=\left[a_{1}, \ldots, a_{2 m}\right]$-Denominator
$N\left[\left[c_{1}, \ldots, c_{k}\right]\right]=\left[\left[c_{1}, \ldots, c_{k}\right]\right]$-Numerator
$D\left[\left[c_{1}, \ldots, c_{k}\right]\right]=\left[\left[c_{1}, \ldots, c_{k}\right]\right]$-Denominator

Continued fractions and their properties

Theorem1（Euler Continuants，高木貞治「代数学講義」or Hardy－Wright） Regular CF and negative CF satisfy the following Euler＇s continuants：
$N\left[a_{1}, \ldots, a_{2 m}\right]=\operatorname{det}\left(\begin{array}{cccccc}a_{1} & 1 & & & & \\ -1 & a_{2} & 1 & & & \\ & -1 & a_{3} & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & a_{2 m-1} & 1 \\ & & & & -1 & a_{2 m}\end{array}\right)$

Continued fractions and their properties

If $a_{1} \neq 0, D\left[a_{1}, \ldots, a_{2 m}\right]=\frac{\partial}{\partial a_{1}} N\left[a_{1}, \ldots, a_{2 m}\right]$ If $c_{1} \neq 0, D\left[\left[c_{1}, \ldots, c_{k}\right]\right]=\frac{\partial}{\partial c_{1}} N\left[\left[c_{1}, \ldots, c_{k}\right]\right]$

Continued fractions and their properties

Theorem2

For $\frac{r}{s} \in \mathbb{Q}>0$,
$\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{2 m}\right]=\left[\left[c_{1}, c_{2}, \ldots, c_{k}\right]\right]$,

$$
\begin{aligned}
& M^{+}\left(a_{1}, a_{2}, \ldots, a_{2 m}\right):=\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{2} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{2 m} & 1 \\
1 & 0
\end{array}\right) \\
& M\left(c_{1}, c_{2}, \ldots, c_{k}\right):=\left(\begin{array}{cc}
c_{1} & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
c_{2} & -1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
c_{k} & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

\Rightarrow
$M^{+}\left(a_{1}, \ldots, a_{2 m}\right)=\left(\begin{array}{ll}r & r_{2 m-1}^{\prime} \\ s & s_{2 m-1}^{\prime}\end{array}\right), M\left(c_{1}, \ldots, c_{k}\right)=\left(\begin{array}{cc}r & -r_{k-1} \\ s & -s_{k-1}\end{array}\right), ~$
$\frac{r_{2 m-1}^{\prime}}{s_{2 m-1}^{\prime}}=\left[a_{1}, a_{2}, \ldots, a_{2 m-1}\right], \frac{r_{k-1}}{s_{k-1}}=\left[\left[c_{1}, \ldots, c_{k-1}\right]\right]$

Continued fractions and their properties

Corollary of Theorem2

$$
R=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), L=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),
$$

(R, S) and (L, S) is the standard choice of generators of the $\operatorname{group} S L(2, \mathbb{Z})$ the above matrices are as follows:
$M^{+}\left(a_{1}, \ldots, a_{2 m}\right)=R^{a_{1}} L^{a_{2}} R^{a_{3}} L^{a_{4}} \ldots R^{a_{2 m-1}} L^{a_{2 m}}$
$M\left(c_{1}, \ldots, c_{k}\right)=R^{c_{1}} S R^{c_{2}} S R^{c_{3}} S \cdots R^{c_{k}} S$

Geometric invariants coming from a graph related to continued fractions

[LS]:K.Lee and R.Schiffler , Cluster algebras and Jones polynomials. . Selecta Math. (N.S.) 25 (2019), no. 4, Paper No. 58, 41 pp.
[KW]:T.Kogiso, and M. Wakui, A bridge between Conway-Coxeter friezes and rational tangles through the Kauffman bracket polynomials. J. Knot Theory Ramifications 28 (2019), no. 14, 1950083, 40 pp.
[NT]:W.Nagai and Y.Terashima, Cluster variables, ancestral triangles and Alexander polynomials, Adv. Math. 363 (2020), 106965, 37 pp.
[MO]:S. Morier-Genoud, V. Ovsienko, q-deformed rationals and q-continued fractions, Forum Math. Sigma 8 (2020), No.e13, 55pp.
$[\mathrm{LS}] \Rightarrow$ Jones polynomials of 2-bridge links by using Snake graph and F-polynomials.
[KW] \Rightarrow Kauffman bracket polynomials of 2-bridge links by using Ancestral triangles and Conway-Coxeter frieze.
[NT] \Rightarrow Alexander polynomials and Jones polynomials of 2-bridge links by using Ancestral triangles and F-Polynomials.
$[\mathrm{MO}] \Rightarrow$ Jones polynomials of 2-bridge links by using Fraey Boats.

q-Continued fractions and their properties

$\S \S q$-Deformations of continued fractions

q-Continued fractions and their properties

Sophie Morier-Genord and Valentin Ovsienko, q-deformed rationals and q-continued fractions, Forum Math. Sigma 8 (2020), Paper No. e13, 55 pp.

q-Continued fractions and their properties

Definition 1.1

$$
\left[a_{2 m-1}\right]_{q}+\frac{q^{a_{2 m-1}}}{\left[a_{2 m}\right]_{q^{-1}}}
$$

q-Continued fractions and their properties

q-Continued fractions and their properties

Theorem 1(M-J and 0)

$$
\begin{aligned}
& \frac{r}{s}=\left[a_{1}, \ldots, a_{2 m}\right]=\left[\left[c_{1}, \ldots, c_{k}\right]\right] \\
& \stackrel{y}{\Rightarrow} \\
& \text { then }\left[a_{1}, \ldots, a_{2 m}\right]_{q}=\left[\left[c_{1}, \ldots, c_{2 m}\right]\right]_{q} \\
&]_{q}=\left[\left[c_{1}, \ldots, c_{k}\right]\right]_{q}=:\left[\frac{r}{s}\right]_{q}
\end{aligned}
$$

Example

$\left[\frac{5}{2}\right]_{q}=[[3,2]]_{q}=[2,2]_{q}=\frac{1+2 q+q^{2}+q^{3}}{1+q}$
$\left[\frac{5}{3}\right]_{q}=[[2,3]]_{q}=[1,1,1,1]_{q}=\frac{1+q+2 q^{2}+q^{3}}{1+q+q^{2}}$
$\left[\frac{7}{3}\right]_{q}=[[3,2,2]]_{q}=[2,3]_{q}=\frac{1+2 q+2 q^{2}+q^{3}+q^{4}}{1+q+q^{2}}$
$\left[\frac{7}{4}\right]_{q}=[[2,4]]_{q}=[1,1,2,1]_{q}=\frac{1+q+2 q^{2}+2 q^{3}+q^{4}}{1+q+q^{2}+q^{3}}$
$\left[\frac{7}{5}\right]_{q}=[[2,2,3]]_{q}=[1,1,2,1]_{q}=\frac{1+q+2 q^{2}+2 q^{3}+q^{4}}{1+q+2 q^{2}+q^{3}}$
for the case of denominator $[2]_{q}$,
(C) $\left[\frac{2 m+1}{2}\right]_{q}=\frac{1+2 q+2 q^{2}+\cdots+2 q^{m-1}+q^{m}+q^{m+1}}{1+q}$
(d) $\left[\frac{3 m+1}{3}\right]_{q}=\frac{1+2 q+3 q^{2}+3 q^{3}+\cdots+3 q^{m-1}+2 q^{m}+q^{m+1}+q^{m+2}}{1+q+q^{2}}$
$\left\lceil\frac{3 m+2}{2}\right\rceil_{a}=\frac{1+2 q+3 q^{2}+3 q^{3}+\cdots+3 q^{m-1}+2 q^{m}+2 q^{m+1}+q^{m+2}}{\text { Takeyoshi Kogiso (Josai University) }}$

q-Continued fractions and their properties

Theorem(Morier-Genoud and V.Ovsienko, 2019)
$M_{q}^{+}\left(a_{1}, \ldots, a_{2 m}\right):=$
$\left(\begin{array}{cc}{\left[a_{1}\right]_{q}} & q^{a_{1}} \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}{\left[a_{2}\right]_{q^{-1}}} & q^{-a_{2}} \\ 1 & 0\end{array}\right) \cdots\left(\begin{array}{cc}{\left[a_{2 m-1}\right]_{q}} & q^{a_{2 m-1}} \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}{\left[a_{2 m}\right]_{q^{-1}}} & -q^{-a_{2 m}} \\ 1 & 0\end{array}\right)$
$M_{q}\left(c_{1}, \ldots, c_{k}\right):=$
$\left(\begin{array}{cc}{\left[c_{1}\right]_{q}} & -q^{c_{1}-1} \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}{\left[c_{2}\right]_{q}} & -q^{c_{2}-1} \\ 1 & 0\end{array}\right) \cdots\left(\begin{array}{cc}{\left[c_{k-1}\right]_{q}} & -q^{c_{k-1}-1} \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}{\left[c_{k}\right]_{q}} & -q^{c_{k}-1} \\ 1 & 0\end{array}\right)$

q-Continued fractions and their properties

(i) $M_{q}^{+}\left(a_{1}, \ldots, a_{2 m}\right)=\left(\begin{array}{cc}q \mathcal{R} & \mathcal{R}_{2 m-1}^{\prime} \\ q \mathcal{S} & \mathcal{S}_{2 m-1}^{\prime}\end{array}\right)$
where $\frac{\mathcal{R}(q)}{\mathcal{S}(q)}=\left[a_{1}, a_{2}, \ldots, a_{2 m}\right]_{q}, \frac{\mathcal{R}_{2 m-1}^{\prime}(q)}{\mathcal{S}_{2 m-1}^{\prime}(q)}=\left[a_{1}, \ldots, a_{2 m-1}\right]_{q}$
(ii) $M_{q}\left(c_{1}, \ldots, c_{k}\right)=\left(\begin{array}{cc}\mathcal{R} & -q^{c_{k}-1} \mathcal{R}_{k-1} \\ \mathcal{S} & -q^{c_{k}-1} \mathcal{S}_{k-1}^{\prime}\end{array}\right)$
where $\frac{\mathcal{R}(q)}{\mathcal{S}(q)}=\left[\left[c_{1}, \ldots, c_{k}\right]\right]_{q}, \frac{\mathcal{R}_{k-1}(q)}{\mathcal{S}_{k-1}(q)}=\left[c_{1}, \ldots, c_{k-1}\right]_{q}$
$\xrightarrow{(\text { iii) })} R_{q}:=\left(\begin{array}{ll}q & 1 \\ 0 & 1\end{array}\right), L_{q}:=\left(\begin{array}{cc}1 & 0 \\ 1 & q^{-1}\end{array}\right), S_{q}:=\left(\begin{array}{cc}0 & -q^{-1} \\ 1 & 0\end{array}\right)$
$M_{q}^{+}\left(a_{1}, \ldots, a_{2 m}\right)=R_{q}^{a_{1}} L_{q}^{a_{2}} \cdots R_{q}^{a_{2 m-1}} L_{q}^{a_{2 m}}$
$M_{q}^{+}\left(c_{1}, \ldots, c_{k}\right)=R_{q}^{c_{1}} S_{q} R_{q}^{c_{2}} S_{q} \cdots S_{q} R_{q}^{c_{k}} S_{q}$

q-Continued fractions and their properties

$$
\begin{align*}
& \text { (iv) } K_{2 m}^{+}\left(a_{1}, \ldots, a_{2 m}\right)_{q}:= \\
& \left(\begin{array}{cccc}
{\left[a_{1}\right]_{q}} & q^{a_{1}} & & \\
-1 & {\left[a_{2}\right]_{q^{-1}}} & q^{-a_{2}} & \\
& -1 & {\left[a_{3}\right]_{q}} & q^{a_{3}}
\end{array}\right. \\
& -1 \quad\left[\begin{array}{lll}
\left.a_{2 m-1}\right]_{q} & q^{a_{2 m-1}}
\end{array}\right. \\
& -1 \quad\left[a_{2 m}\right]_{q^{-1}} \\
& \left(\begin{array}{cccc}
{\left[c_{1}\right]_{q}} & q^{c_{1}-1} & & \\
1 & {\left[c_{2}\right]_{q}} & q^{c_{2}-1} & \\
& 1 & {\left[c_{3}\right]_{q}} & q^{c_{3}-1}
\end{array}\right. \\
& K_{k}\left(c_{1}, \ldots, c_{k}\right)_{q}:=\operatorname{det} \\
& 1 \quad\left[\begin{array}{cc}
\left.c_{k-1}\right]_{q} & q^{c_{k-1}-1} \\
1 & {\left[c_{k}\right]_{q}}
\end{array}\right.
\end{align*}
$$

q-Continued fractions and their properties

$$
M_{q}^{+}\left(a_{1}, \ldots, a_{2 m}\right)=\left(\begin{array}{cc}
K_{2 m}^{+}\left(a_{1}, \ldots, a_{2 m}\right)_{q} & q^{a_{2 m}} K_{2 m-1}^{+}\left(a_{1}, \ldots, a_{2 m-1}\right)_{q^{-1}} \\
K_{2 m-1}^{+}\left(a_{2}, \ldots, a_{2 m}\right)_{q} & q^{a_{2 m}} K_{2 m-2}^{+}\left(a_{2}, \ldots, a_{2 m-1}\right)_{q^{-1}}
\end{array}\right)
$$

$$
M_{q}\left(c_{1}, \ldots, c_{k}\right)=\left(\begin{array}{cl}
K_{k}\left(c_{1}, \ldots, c_{k}\right)_{q} & -q^{c_{k}-1} K_{k-1}\left(c_{1}, \ldots, c_{k-1}\right)_{q} \\
K_{k-1}\left(c_{2}, \ldots, c_{k}\right)_{q} & -q^{c_{k}-1} K_{k-2}\left(c_{2}, \ldots, c_{k-1}\right)_{q}
\end{array}\right)
$$

(v) For $\left[\frac{r}{s}\right]_{q}=\left[a_{1}, a_{2}, \ldots, a_{2 m}\right]_{q}=\left[\left[c_{1}, \ldots, c_{k}\right]\right]_{q}=\frac{\mathcal{R}(q)}{\mathcal{S}(q)}$,
$\mathcal{R}(q)=K_{k}\left(c_{1}, \ldots, c_{k}\right)_{q}=q^{a_{2}+a_{4}+\cdots+a_{2 m-1}} K_{2 m}^{+}\left(a_{1}, a_{2}, \ldots, a_{2 m}\right)_{q}$
$\mathcal{S}(q)=K_{k-1}\left(c_{1}, \ldots, c_{k}\right)_{q}=q^{a_{2}+a_{4}+\cdots+a_{2 m}-1} K_{2 m^{-1}}^{+}\left(a_{2}, \ldots, a_{2 m}\right)_{q}$
(vi) $K_{k}\left(c_{1}, \ldots, c_{k}\right)_{q}=q^{c_{1}+c_{2}+\cdots+c_{c}-k} K_{k}\left(c_{k}, \ldots, c_{1}\right)_{q^{-1}}$

q-Continued fractions and their properties

(vii) If $\left(c_{1}, \ldots, c_{k}\right)$ is quiddity sequence of a triangulated n-gon one has $K_{k}\left(c_{1}, \ldots, c_{k}\right)_{q}=K_{n-k-2}\left(c_{k+2}, \ldots, c_{n}\right)_{q}$
(viii) (q-Ptolemy relation)
$K_{i, j}^{q}:=K_{j-i-1}\left(c_{i+1}, \ldots . c_{j-1}\right)_{q}\left(K_{i, i}^{q}=0, K_{i, i+1}^{q}=1\right)$
\Rightarrow
$K_{i, j}^{q} K_{j, \ell}^{q}=q^{c_{j}+\cdots+c_{k-1}-(k-j)} K_{i, j}^{1} K_{k, \ell}^{q}+K_{j, k}^{q} K_{i, \ell}^{q}(1 \leq i<j<k<\ell \leq n)$ (Ptolemy-relation)

q-Continued fractions and their properties

Example

$\frac{5}{3}=1+\frac{2}{3}=1+\frac{1}{1+\frac{1}{2}}=[1,1,2]=[1,1,1,1]=1-\frac{1}{3}=[[2,3]]$ and
(i) $M_{q}(2,3)=\left(\begin{array}{cc}{[2]_{q}} & -q^{2-1} \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}{[3]_{q}} & -q^{3-1} \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}\mathcal{R} & -q^{2} \mathcal{R}_{k-1}^{\prime} \\ \mathcal{S} & -q^{2} \mathcal{S}_{k-1}^{\prime}\end{array}\right)$
$M_{q}^{+}(1,1,1,1)=\left(\begin{array}{cc}{[1]_{q}} & q \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}{[1]_{q^{-1}}} & q^{-1} \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}{[1]_{q}} & q \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}{[1]_{q^{-1}}} & q^{-1} \\ 1 & 0\end{array}\right)=$ $\left(\begin{array}{ll}q^{-1} \mathcal{R} & q^{-2} \mathcal{R}_{2 m-1} \\ q^{-1} \mathcal{S} & q^{-2} \mathcal{S}_{2 m-1}\end{array}\right)$
$\frac{M_{q}(2,3)(1,1)}{M_{q}(2,3)(2,1)}=\frac{1+q+2 q^{2}+q^{3}}{1+q+q^{2}}=\frac{M_{q}^{+}(1,1,1,1)(1,1)}{M_{q}^{+}(1,1,1,1)(2,1)}$

q-Continued fractions and their properties

$$
\begin{aligned}
& R_{q} L_{q} R_{q} L_{q}=\left(\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & q^{-1}
\end{array}\right)\left(\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & q^{-1}
\end{array}\right) \\
& R_{q}^{2} S_{q} R_{q}^{3} S_{q}=\left(\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right)^{2}\left(\begin{array}{cc}
0 & q^{-1} \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
q & 1 \\
0 & 1
\end{array}\right)^{3}\left(\begin{array}{cc}
0 & -q^{-1} \\
1 & 0
\end{array}\right)=M_{q}(3,2)= \\
& \left(\begin{array}{cc}
{[2]_{q}} & -q^{2-1} \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
{[3]_{q}} & -q^{3-1} \\
1 & 0
\end{array}\right) \\
& \operatorname{det}\left(\begin{array}{cc}
{[2]_{q}} & q^{2-1} \\
1 & {[3]_{q}}
\end{array}\right)=[2]_{q}[3]_{q}-q=N\left[\frac{3}{2}\right]_{q}=q^{3} \operatorname{det}\left(\begin{array}{ccc}
{[1]_{q}} & q & \\
-1 & {[1]_{q^{-1}}} & q^{-1} \\
& -1 & {[1]_{q}} \\
& & -1 \\
& & {[1]_{q^{-1}}}
\end{array}\right) \\
& \\
& {\left[\frac{5}{3}\right]_{q}=[1,1,1,1]_{q}=[[2,3]]_{q}=\frac{\mathcal{R}(q)}{\mathcal{S}(q)}} \\
& \mathcal{R}(q)=K_{k}\left(c_{1}, \ldots, c_{k}\right)=q^{a_{2}+\cdots a_{2 n}-1} K_{2 m}^{+}\left(a_{1}, \ldots, a_{2 m}\right)_{q} \\
& \mathcal{S}(q)=K_{k-1}\left(c_{2}, \ldots, c_{k}\right)=q^{a_{2}+\cdots a_{2 n}-1} K_{2 m-1}^{+}\left(a_{2}, \ldots, a_{2 m}\right)_{q}
\end{aligned}
$$

q-Deformation of Markov triples and Markov equations

$\S q$-Deformation of Markov triples and Markov equations

q-Deformations of Markov triples

Theorem1([K], arXiv2008.12913v3)
Put $A_{q}:=\left(\begin{array}{cc}q+1 & q^{-1} \\ 1 & q^{-1}\end{array}\right), B_{q}:=\left(\begin{array}{cc}\frac{q^{3}+q^{2}+2 q+1}{q} & \frac{q+1}{q^{2}} \\ \frac{q+1}{q} & q^{-2}\end{array}\right) \in \operatorname{SL}\left(2, \mathbb{Z}\left[q, q^{-1}\right]\right)$, \Rightarrow
$(x, y, z)=$
$\left(\operatorname{trw}\left(A_{q}, B_{q}\right) /[3]_{q},\left\{\operatorname{tr} w\left(A_{q}, B_{q}\right) w^{\prime}\left(A_{q}, B_{q}\right)\right\} /[3]_{q}, \operatorname{tr}\left(w^{\prime}\left(A_{q}, B_{q}\right) /[3]_{q}\right) \in\right.$ $\mathbb{Z}\left[q, q^{-1}\right]^{3}$
is a solution of

$$
x^{2}+y^{2}+z^{2}+\frac{(q-1)^{2}}{q^{3}}=[3]_{q} x y z
$$

for a Christoffel $a b$-words $\left(w(a, b), w(a, b) w^{\prime}(a, b), w^{\prime}(a, b)\right)$.

q-Deformations of Markov triples

Theorem2([K], arXiv2008.12913v3.)

If $(x, y, z)=\left(a_{q}, b_{q}, c_{q}\right)$ is a solution of

$$
(* * q) \quad x^{2}+y^{2}+z^{2}+\frac{(q-1)^{2}}{q^{3}}=[3]_{q} x y z
$$

\Rightarrow
$(\tilde{x}, y, z)=\left([3]_{q} b_{q} c_{q}-a_{q}, b_{q}, c_{q}\right),(x, \tilde{y}, z)=\left(a_{q},[3]_{q} a_{q} c_{q}-b_{q}, c_{q}\right),(x, y, \tilde{z})=$ $\left(a_{q}, b_{q},[3]_{q} a_{q} b_{q}-c_{q}\right)$
is also a solution of $(* * q)$.

q-Deformations of Markov triples

Example1

$$
\begin{aligned}
& \left(\frac{\operatorname{tr}\left(A_{q}^{3} B_{q}\right)}{[3]_{q}}\right)^{2}+\left(\frac{\operatorname{tr}\left(A_{q}^{3} B_{q} A_{q}^{2} B_{q}\right)}{[3]_{q}}\right)^{2}+\left(\frac{\operatorname{tr}\left(A_{q}^{2} B_{q}\right)}{[3]_{q}}\right)^{2}+\frac{(q-1)^{2}}{q^{3}} \\
& =\left\{\frac{\left(q^{2}+1\right)\left(q^{6}+3 q^{5}+3 q^{4}+3 q^{3}+3 q^{2}+3 q+1\right)}{q^{5}}\right\}^{2}+ \\
& \left\{\frac{\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{12}+5 q^{11}+12 q^{10}+22 q^{9}+32 q^{8}+39 q^{7}+43 q^{6}+39 q^{5}+32 q^{4}+22 q^{3}+12 q^{2}+5 q+1\right)}{q^{9}}\right\}^{2}+ \\
& \left\{\frac{q^{4}+q^{3}+q^{2}+q+1}{q^{3}}\right\}^{2}+\frac{(q-1)^{2}}{q^{3}} \\
& =[3]_{q}\left\{\frac{\left(q^{2}+1\right)\left(q^{6}+3 q^{5}+3 q^{4}+3 q^{3}+3 q^{2}+3 q+1\right)}{q^{5}}\right\} \\
& \left\{\frac{\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{12}+5 q^{11}+12 q^{10}+22 q^{9}+32 q^{8}+39 q^{7}+43 q^{6}+39 q^{5}+32 q^{4}+22 q^{3}+12 q^{2}+5 q+1\right)}{q^{9}}\right\} \\
& \left\{\frac{q^{4}+q^{3}+q^{2}+q+1}{q^{3}}\right\} \\
& =[3]_{q} \frac{\operatorname{tr}\left(A_{q}^{3} B_{q}\right)}{[3]_{q}} \frac{\operatorname{tr}\left(A_{q}^{3} B_{q} A_{q}^{2} B_{q}\right)}{[3]_{q}} \frac{\operatorname{tr}\left(A_{q}^{2} B_{q}\right)}{[3]_{q}}
\end{aligned}
$$

Castling transform and t-Deformations of Markov triples

Tree of $\left(\left\{f_{w(a, b)}(t), f_{w(a, b) w^{\prime}(a, b)}(t), f_{w^{\prime}(a, b)}(t)\right)\right\}_{\left(w(a, b), w(a, b) w^{\prime}(a, b), w^{\prime}(a, b)\right) \text { is a triple of Christoffel }}$

Figure:

t-Deformations of Markov triples

Theorem([K], arXiv2008.12913v3)

For Christoffel $a b$-word triple ($w, w w^{\prime}, w^{\prime}$),
$\left(f_{w}(t), f_{w w^{\prime}}(t), f_{w^{\prime}}(t)\right)$
is a solution of

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}+(t-3)=t x y z . \tag{2}
\end{equation*}
$$

Relation of q-Deformations and t-Deformations

Theorem([K], arXiv2008.12913v3)

(i)For t-deformation $f_{w}(t)$ and q-deformation of Markov number associated with christoffel $a b$-word w,
\qquad

$$
\begin{equation*}
f_{w}\left([3]_{q} / q\right)=q h_{w}(q) . \tag{3}
\end{equation*}
$$

(ii) There exists one to one correpondence between the set of q-deformation of a Markov triple and t-deformation of the Markov triple.
(iii) For the value q such taht $A_{q} B_{q}=B_{q} A_{q}$
namely $q=-1$ or $q=e^{ \pm \frac{2}{3} \pi \sqrt{-1}}$
\Rightarrow
$x^{2}+y^{2}+z^{2}-4=x y z$ (Zagier type).

Relation of q-Deformations and t-Deformation

Example

(i) $f_{a^{2} b}\left(q^{-1}[3]_{q}\right)=q^{-3}[3]_{q}^{3}-q^{-2}[3]_{q}^{2}-2 q^{-1}[3]_{q}+1$
$=q^{-3}\left\{q^{6}+2 q^{5}+2 q^{4}+3 q^{3}+2 q^{2}+2 q+1\right\}$
$=q h_{a^{2}} b(q)$
(ii) $q h_{a^{2} b a b}(q)=$
$q^{-6}\left(q^{12}+4 q^{11}+9 q^{10}+16 q^{9}+23 q^{8}+29 q^{7}+30 q^{6}+29 q^{5}+23 q^{4}+16 q^{3}+9 q^{2}+4 q+1\right)$
$=\left(q^{-1}[3]_{q}\right)^{6}-2\left(q^{-1}[3]_{q}\right)^{5}-2\left(q^{-1}[3]_{q}\right)^{4}+4\left(q^{-1}[3]_{q}\right)^{3}+\left(q^{-1}[3]_{q}\right)^{2}-\left(q^{-1}[3]_{q}\right)-1$
$=t^{6}-2 t^{5}-2 t^{4}+4 t^{3}+t^{2}-t-1$
$=f_{a^{2} \text { bab }}(t)$.

Future Problems

Classify and charaterize prehomogeneous vector spaces coming from F-polynomials associated to quivers of type A.

Thanks

Thank you for your attention!

References

[A]:M. Aigner, Markov's Theorem and 100 Years of the Uniqueness Conjecture, Springer, 2013, 978-3-319-00888-2.
[Bom]: E. Bombieri, Continued fractions and the Markoff tree. Expositiones Mathematicae 25(3) (2007), 187-213.
[CoCo]:J.H.Conway, H.S.M.Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), no. 400, 87-94., no. 401, 175-183.
[CS]:I.Canakci, R.Schiffler , Cluster algebras and continued fractions.
arXiv:1608.06568v3
[FWZ]:S. Fomin, L.Williams and A.Zelevinsky, Introduction to Cluster Algebras,
https://arxiv.org/pdf/1608.05735.pdf
[Kimura] T.Kimura, Introduction to prehomogeneous vector spaces, Transl. Math.
Monogr., Amer. Math. Soc., Providence, RI, 215 (2002).
$[\mathrm{K}]: T . K o g i s o, ~ q$-Deformations and t-Deformations of the Markov triples., arXiv2008.12913v3.
[KS1]:T.Kogiso and F.Sato, Local functional equations attached to the polarizations of homaloidal polynomials. Kyushu J. Math. 72 (2018), no. 2, 307-331.
[KS2]:T.Kogiso and F.Sato, Clifford quartic forms and local functional equations of

References

［KW3］：T．Kogiso and M．Wakui，A characterization of Conway－Coxeter friezes of zigzag type by rational link，to appear in Osaka Journal of Mathematics． ［Kogiso－Nakashima2］T．Kogiso，and H．Nakashima，Prehomogeneous vector spaces obtained from triangle arrangements，arXiv．2210．10467 ［Kogiso－Nakashima2］T．Kogiso，and H．Nakashima，Prehomogeneous vector spaces coming from Veronese embeddings，in preparation．
［LS］：Kyungyong Lee and Ralf Schiffler，Cluster algebras and Johnes polynomials．
Selecta Math． 25 （2019），No．4，No．58，41pp．
［MO］：S．Morier－Genoud，V．Ovsienko，q－deformed rationals and q－continued fractions，Forum Math．Sigma 8 （2020），No．e13，55pp．
［NT］：Wataru Nagai and Yuji Terashima，Cluster variables，ancetral triangles and Alexander polynomials，Adv．Math．363（2020），106965，37pp．．
［W］：和久井道久 「結び目と連分数」，2017，
http：／／www2．itc．kansai－u．ac．jp／${ }^{\sim}$ wakui／Knots and ContiFrac．pdf

