# Cluster algebra and $q$-Painlevé equation: higher order generalization and degeneration structure 

Takao Suzuki

Kindai University

Advances in Cluster Algebras 2023
Mar. 24, 2023

## (2) Higher order generalization

Takao Suzuki (Kindai University)

## Painlevé equation

## Problem

Define a new transcendental function as a solution of a differential equation in the complex domain.

The solution should be controlled by the differential equation. Hence we require that the differential equation has no movable branch point (Painlevé property).

## Example

The differential equation

$$
n y^{n-1} \frac{d y}{d t}=1 \quad(n \in \mathbb{N})
$$

has a movable branch point. In fact, it has a solution $y=(t-c)^{1 / n}$.

All of 1st order meromorphic ordinary differential equations with the Painlevé property were classified by Fuchs and Poincaré in 19th century.

## Fact

All differential equations of the form $R\left(t, y, y^{\prime}\right)=0$ with the Painlevé property are reduced to the following 3 types of equations:

- Solvable by quadratures
- $y^{\prime}=a(t) y^{2}+b(t) y+c(t)$
- $y^{\prime}=4 y^{3}-g_{2} y-g_{3}\left(g_{2}, g_{3} \in \mathbb{C}\right)$

At the beginning of 20th century, Painlevé and Gambier tried to classify 2nd order ODEs.

## Fact

All differential equations of the form $y^{\prime \prime}=R\left(t, y, y^{\prime}\right)$ with the Painlevé property are reduced to the following 4 types of equations:

- Solvable by quadratures
- Linear differential equations
- $y^{\prime \prime}=6 y^{2}-g_{2}\left(g_{2} \in \mathbb{C}\right)$
- Painlevé equations $P_{\mathrm{I}}, \ldots, P_{\mathrm{VI}}$


## Discrete Painlevé equation

In 1990's, Grammaticos and his collaborators proposed the singularity confinement as a discrete analogue of the Painlevé property.

## Example

Consider a difference equation

$$
x_{n+1}+x_{n-1}=\frac{a x_{n}}{1-x_{n}^{2}}, \quad x_{0}=p, \quad x_{1}=1+\varepsilon
$$

Then we obtain

$$
x_{2}=-\frac{a}{2 \varepsilon}-\frac{a+4 p}{4}+O(\varepsilon), \quad x_{3}=-1+\varepsilon+O\left(\varepsilon^{2}\right), \quad x_{4}=-p+O(\varepsilon)
$$

Taking a limit $\varepsilon \rightarrow 0$, we can find that a singularity appears at $x_{2}$ and disappears at $x_{4}$.
That became a trigger for the discovery of various discrete Painlevé equations.

## Problem

How many 2nd order discrete Painlevé equations exist?
An answer to this problem was given as follows.

## Fact ([Sakai 01])

The 2nd order continuous/discrete Painlevé equations are classified by the geometry of rational surfaces as follows:

|  | Symmetry/Surface type |  |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| elliptic | $E_{8} / A_{0}$ |  |  |  |  |  |  |
| multiplicative | $E_{8} / A_{0}$ | $E_{7} / A_{1}$ | $E_{6} / A_{2}$ | $D_{5} / A_{3}$ | $A_{4} / A_{4}$ | $E_{3} / A_{5}$ |  |
|  | $E_{2} / A_{6}$ | $A_{1} / A_{7}=8$ | $A_{1} / A_{7}$ | $A_{0} / A_{8}$ |  |  |  |
| additive | $E_{8} / A_{0}$ | $E_{7} / A_{1}$ | $E_{6} / A_{2}$ | $D_{4} / D_{4}$ | $A_{3} / D_{5}$ | $2 A_{1} / D_{6}$ |  |
|  | $A_{2} / E_{6}$ | $\left.A_{1}\right\|^{2}=4 / D_{7}$ | $A_{1} / E_{7}$ | $A_{0} / D_{8}$ | $A_{0} / E_{8}$ |  |  |

Here the symbols $E_{3}$ and $E_{2}$ stand for $A_{2}+A_{1}$ and $A_{1}+\underset{|\alpha|^{2}=14}{A_{1}}$ respectively. Blue-colored types correspond to the continuous Painlevé equations.

## (q-)Painlevé VI equation

The Painlevé VI equation is described as the Hamiltonian system

$$
\begin{aligned}
& t(t-1) \frac{d q}{d t}=\frac{\partial H_{\mathrm{VI}}}{\partial p}, \quad t(t-1) \frac{d p}{d t}=-\frac{\partial H_{\mathrm{VI}}}{\partial q}, \\
& H_{\mathrm{VI}}\left[\kappa_{0}, \kappa_{1}, \kappa_{t}, \kappa ; q, p\right]=q(q-1)(q-t) p\left(p-\frac{\kappa_{0}}{q}-\frac{\kappa_{1}}{q-1}-\frac{\kappa_{t}-1}{q-t}\right)+\kappa q_{i} .
\end{aligned}
$$

In 1996, Jimbo and Sakai proposed a $q$-analogue of the Painlevé VI equation, which is described as

$$
\frac{f \bar{f}}{\alpha_{3} \alpha_{4}}=\frac{\left(\bar{g}-t \beta_{1}\right)\left(\bar{g}-t \beta_{2}\right)}{\left(\bar{g}-\beta_{3}\right)\left(\bar{g}-\beta_{4}\right)}, \quad \frac{g \bar{g}}{\beta_{3} \beta_{4}}=\frac{\left(f-t \alpha_{1}\right)\left(f-t \alpha_{2}\right)}{\left(f-\alpha_{3}\right)\left(f-\alpha_{4}\right)}, \quad \bar{t}=q t,
$$

where $\alpha_{1} \alpha_{2} \beta_{3} \beta_{4}=q \beta_{1} \beta_{2} \alpha_{3} \alpha_{4}$.

|  | Symmetry/Surface type |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| elliptic | $E_{8} / A_{0}$ |  |  |  |  |  |
| multiplicative | $E_{8} / A_{0}$ | $E_{7} / A_{1}$ | $E_{6} / A_{2}$ | $D_{5} / A_{3}$ | $A_{4} / A_{4}$ | $E_{3} / A_{5}$ |
|  | $E_{2} / A_{6}$ | ${ }_{\text {\| }}^{\text {a }}{ }^{A_{1}=8} / A_{7}$ | $A_{1} / A_{7}$ | $A_{0} / A_{8}$ |  |  |
| additive | $E_{8} / A_{0}$ | $E_{7} / A_{1}$ | $E_{6} / A_{2}$ | $D_{4} / D_{4}$ | $A_{3} / D_{5}$ | $2 A_{1} / D_{6}$ |
|  | $A_{2} / E_{6}$ | $\underset{\substack{\text { \| }}}{A_{1}=4} / D_{7}$ | $A_{1} / E_{7}$ | $A_{0} / D_{8}$ | $A_{0} / E_{8}$ |  |

## Cluster mutation

In this talk we use the following notations:

- $Q$ is a quiver without loops and 2-cycles.
- $I$ is a vertex set of $Q$.
- $\Lambda=\left(\lambda_{i, j}\right)_{i, j \in I}$ is a skew-symmetric matrix corresponding to $Q$ as follows:
(1) If there are $k$ arrows from $i$ to $j$, then we set $\lambda_{i, j}=k$ and $\lambda_{j, i}=-k$.
(2) If there is no arrow between $i$ and $j$, then we set $\lambda_{i, j}=\lambda_{j, i}=0$.
- $y_{i}$ is a coefficients corresponding to $i \in I$.
- $\mu_{i}$ is a mutation at $i \in I$, which acts on the coefficients as

$$
\mu_{i}\left(y_{j}\right)=\left\{\begin{array}{cc}
y_{i}^{-1} & (j=i) \\
y_{j}\left(1+y_{i}^{-1}\right)^{\lambda_{i j}} & \left(\lambda_{i j}>0\right) \\
y_{j}\left(1+y_{i}\right)^{-\lambda_{i j}} & \left(\lambda_{i j}<0\right) \\
y_{j} & \left(j \neq i, \lambda_{i j}=0\right)
\end{array}\right.
$$

- $(i, j)$ is a permutation of $i, j \in I$.

Consider the following quiver $Q$ :


## Fact ([Okubo 15])

In the above quiver $Q$ we set

$$
T=(5,7)(6,8) \mu_{5} \mu_{6} \mu_{7} \mu_{8}(1,3)(2,4) \mu_{1} \mu_{2} \mu_{3} \mu_{4}
$$

Then $Q$ is invariant under the action of $T$. Moreover, the action $T$ on the coefficients $y_{1}, \ldots, y_{8}$ provides the $q$-Painlevé $V I$ equation.

## Fact ([Okubo 15], [Bershtein-Gavrylenko-Marshakov 18])

All of the q-Painlevé equations are derived from mutation-periodic quivers.
(2) Higher order generalization

## (3) Degeneration structure

Takao Suzuki (Kindai University)

## Generalized ( $q-$-)Painlevé VI equation

The Painlevé VI equation is obtained as the isomonodromy deformation of the Fuchsian equation. We propose higher order generalizations from this point of view.

## Fact ([Oshima 08])

Irreducible Fuchsian equations with a fixed number of accessory parameters can be reduced to finite types of systems by the Katz's two operations (addition and middle convolution).

## Fact ([Haraoka-Filipuk 07])

The isomonodromy deformation equation of the Fuchsian equation is invariant under the Katz's two operations.

Thanks to them, we have a good classification theory of isomonodromy deformation equations of Fuchsian equations.

We list 4 types of representative isomonodromy deformation equations below:

- Garnier system
- Isomonodromy deformation [Garnier 1912]
- Sasano system
- Okamoto initial value space and affine Weyl group symmetry [Sasano 07]
- Similarity reduction of the integrable hierarchy [Fuji-S 08]
- Isomonodromy deformation [Sakai 10][Fuji-Inoue-Shinomiya-S 13]
- FST system
- Similarity reduction of the integrable hierarchy [Fuji-S 09][S 13][Tsuda 14]
- Isomonodromy deformation [Sakai 10]
- Matrix Painlevé system
- Isomonodromy deformation [Sakai 10][Kawakami 15]

Their $q$-analogues are proposed recently (but there is no classification theory):

- $q$-Garnier system
- $q$-Analogue of the isomonodromy deformation [Sakai 05]
- Pade method [Nagao-Yamada 18]
- Birational representation of the extended affine Weyl group [Okubo-S 19]
- $q$-Sasano system
- Birational representation of the extended affine Weyl group [Masuda 15]
- $q$-FST system
- Similarity reduction of the discrete integrable hierarchy [S 15][S 17]
- Pade method [Nagao-Yamada 18]
- Birational representation of the extended affine Weyl group [Okubo-S 19]


## Weyl group

Let $J$ be an index set and $A=\left[a_{i j}\right]_{i, j \in J}$ the generalized Cartan matrix, namely

$$
a_{i i}=2, \quad a_{i j} \in \mathbb{Z}_{\leq 0}, \quad a_{i j}=0 \Leftrightarrow a_{j i}=0 \quad(i \neq j)
$$

We define the Weyl group $W(A)$ associated with the generalized Cartan matrix $A$ by the generators $s_{i}(i \in J)$ and the fundamental relations

$$
r_{i}^{2}=1, \quad\left(r_{i} r_{j}\right)^{m_{i j}}=1 \quad(i \neq j)
$$

Here $m_{i j}$ is defined by the following table:

| $a_{i j} a_{j i}$ | 0 | 1 | 2 | 3 | $\geq 4$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $m_{i j}$ | 2 | 3 | 4 | 6 | $\infty$ |

## Example

Let $J=\{1,2\}$ and

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

Then $W(A)$ is the Weyl group of type $A_{2}$ with the generators $r_{1}, r_{2}$ and the fundamental relations

$$
r_{1}^{2}=r_{2}^{2}=1, \quad r_{1} r_{2} r_{1}=r_{2} r_{1} r_{2}
$$

## Affine Weyl group of type $A_{N-1}^{(1)}$

Let $J=\mathbb{Z}_{N}(=\mathbb{Z} / N \mathbb{Z})$. We set

$$
A=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]
$$

for $N=2$ and

$$
A=\left[\begin{array}{cccccc}
2 & -1 & & & & -1 \\
-1 & 2 & -1 & & O & \\
& -1 & 2 & & & \\
& & & \ddots & & \\
& O & & & 2 & -1 \\
-1 & & & & -1 & 2
\end{array}\right]
$$

for $N \geq 3$. Then $W(A)$ is the affine Weyl group of type $A_{N-1}^{(1)}$ with the generators $r_{i}\left(i \in \mathbb{Z}_{N}\right)$ and the fundamental relations

$$
r_{0}^{2}=r_{1}^{2}=1
$$

for $N=2$ and

$$
r_{i}^{2}=1, \quad r_{i} r_{i+1} r_{i}=r_{i+1} r_{i} r_{i+1} \quad\left(a_{i j}=-1\right), \quad r_{i} r_{j}=r_{j} r_{i} \quad\left(a_{i j}=0\right)
$$

for $N \geq 3$. We denote the affine Weyl group of type $A_{N-1}^{(1)}$ by $W\left(A_{N-1}^{(1)}\right)$.

Let $\varepsilon_{1}, \ldots, \varepsilon_{N}, \delta$ be a set of linearly independent vectors. We define vectors called simple roots $\alpha_{i}\left(i \in \mathbb{Z}_{N}\right)$ by

$$
\alpha_{0}=\delta-\varepsilon_{1}+\varepsilon_{N}, \quad \alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1} \quad(i \neq 0)
$$

Note that $\delta$ is called a null root satisfying

$$
\delta=\alpha_{0}+\ldots+\alpha_{N-1} .
$$

Then a free module $\mathbb{Z} \alpha_{0} \oplus \ldots \oplus \mathbb{Z} \alpha_{N-1}$ is called a root lattice, on which $W\left(A_{N-1}^{(1)}\right)$ can be realized.

## Fact

Let $r_{i}\left(i \in \mathbb{Z}_{N}\right)$ be transformations on the root lattice called simple reflections defined by

$$
\begin{aligned}
& r_{0}\left(\varepsilon_{1}\right)=\varepsilon_{n}+\delta, \quad r_{0}\left(\varepsilon_{n}\right)=\varepsilon_{1}-\delta, \quad r_{0}\left(\varepsilon_{j}\right)=\varepsilon_{j} \quad(j \neq 1, n) \\
& r_{i}\left(\varepsilon_{i}\right)=\varepsilon_{i+1}, \quad r_{i}\left(\varepsilon_{i+1}\right)=\varepsilon_{i}, \quad r_{i}\left(\varepsilon_{j}\right)=\varepsilon_{j} \quad(i \neq 0, j \neq i, i+1)
\end{aligned}
$$

Then they act on the simple roots as

$$
r_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j} \alpha_{i}
$$

and satisfy the fundamental relations for $W\left(A_{N-1}^{(1)}\right)$.

Let $\pi$ be a transformation on the root lattice called a Dynkin diagram automorphism defined by

$$
\pi\left(\varepsilon_{i}\right)=\varepsilon_{i+1} \quad(i \neq N), \quad \pi\left(\varepsilon_{N}\right)=\varepsilon_{1}-\delta
$$

It acts on the simple roots as

$$
\pi\left(\alpha_{i}\right)=\alpha_{i+1}
$$

We define transformations called translations $T_{i}\left(i \in \mathbb{Z}_{n}\right)$ by
$T_{0}=\pi r_{n-1} \ldots r_{1}, \quad T_{n-1}=r_{n-1} \ldots r_{1} \pi, \quad T_{i}=r_{i} \ldots r_{1} \pi r_{n-1} \ldots r_{i+1} \quad(i \neq 0, n-1)$.
They act on the simple roots as

$$
T_{i}\left(\alpha_{i}\right)=\alpha_{i}+\delta, \quad T_{i}\left(\alpha_{i+1}\right)=\alpha_{i+1}-\delta, \quad T_{i}\left(\alpha_{j}\right)=\alpha_{j} \quad(j \neq i, i+1)
$$

## Fact

The fundamental relations

$$
\begin{aligned}
& \pi^{n}=1, \quad \pi r_{i-1}=r_{i} \pi, \quad T_{i} T_{j}=T_{j} T_{i}, \quad T_{0} \ldots T_{n-1}=1, \\
& r_{i} T_{i-1}=T_{i} r_{i}, \quad r_{i} T_{i}=T_{i-1} r_{i}, \quad r_{i} T_{j}=T_{j} r_{i} \quad(j \neq i-1, i), \quad \pi T_{i-1}=T_{i} \pi
\end{aligned}
$$

are satisfied. Hence $W\left(A_{n-1}^{(1)}\right)$ can be extended by a semi-direct product of groups as

$$
\left\langle r_{0}, \ldots, r_{n-1}, \pi\right\rangle=W\left(A_{n-1}^{(1)}\right) \rtimes\langle\pi\rangle=\left\langle T_{0}, \ldots, T_{n-1}\right\rangle \rtimes\left\langle r_{1}, \ldots, r_{n-1}\right\rangle .
$$

## Extended affine Weyl group of type $A_{m n-1}^{(1)} \times A_{m-1}^{(1)} \times A_{m-1}^{(1)}$

Let $y_{[i, k]}\left(i \in \mathbb{Z}_{m n}, k \in \mathbb{Z}_{m}\right)$ be coefficients corresponding vertices in the following quiver:


We define parameters corresponding to the multiplicative simple roots by

$$
a_{i}=\prod_{l=0}^{m-1} y_{[i, l]} \quad\left(i \in \mathbb{Z}_{m n}\right), \quad b_{k}=\prod_{j=0}^{m n-1} y_{[j, k]}, \quad b_{k}^{\prime}=\prod_{j=0}^{m n-1} y_{[j, j+k]} \quad\left(k \in \mathbb{Z}_{m}\right)
$$

Assume that

$$
\prod_{i=0}^{m n-1} a_{i}=\prod_{k=0}^{m-1} b_{k}=\prod_{k=0}^{m-1} b_{k}^{\prime}=q
$$

We first define Dynkin diagram automorphisms $\pi, \pi^{\prime}, \rho$ by

$$
\begin{aligned}
\pi & =\prod_{k=0}^{m-1}([0, k],[1, k+1], \ldots,[m n-1, k+m n-1]) \\
\pi^{\prime} & =\prod_{k=0}^{m-1}([0, k],[1, k], \ldots,[m n-1, k]) \\
\rho & =\prod_{i=0}^{\left\lfloor\frac{m n}{2}\right\rfloor} \prod_{k=0}^{m-1}([i, k],[-i, k-i]) .
\end{aligned}
$$

Here the cyclic permutation is defined by

$$
(N, N-1, \ldots, 2,1)=(N, N-1) \ldots(3,2)(2,1)
$$

They act on the coefficients as

$$
\pi\left(y_{[i, k]}\right)=y_{[i+1, k+1]}, \quad \pi^{\prime}\left(y_{[i, k]}\right)=y_{[i+1, k]}, \quad \rho\left(y_{[i, k]}\right)=y_{[-i, k-i]} .
$$

We next define a simple reflection $r_{0}$ by

$$
r_{0}=\mu_{[0,0]} \mu_{[0,1]} \ldots \mu_{[0, m-2]}([0, m-2],[0, m-1]) \mu_{[0, m-2]} \ldots \mu_{[0,1]} \mu_{[0,0]}
$$

They act on the coefficients as

$$
\begin{aligned}
& r_{0}\left(y_{[0, k]}\right)=\frac{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[0, k+k_{2}\right]}}{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}} y_{\left[0, k+k_{2}+1\right]}}, \quad r_{0}\left(y_{[1, k]}\right)=y_{[1, k]} \frac{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}} y_{\left[0, k+k_{2}\right]}}{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[0, k+k_{2}\right]}}, \\
& r_{0}\left(y_{[-1, k]}\right)=y_{[-1, k]} \frac{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}} y_{\left[0, k+k_{2}+1\right]}}{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[0, k+k_{2}+1\right]}}, \quad r_{0}\left(y_{[j, k]}\right)=y_{[j, k]} \quad(j \neq 0, \pm 1) .
\end{aligned}
$$

We also define simple reflections $r_{1}, \ldots, r_{m n-1}$ by

$$
r_{j}=\pi^{-1} r_{j-1} \pi \quad(j=1, \ldots, m n-1)
$$

In the last, we define a simple reflection $s_{0}$ by

$$
s_{0}=\mu_{[0,0]} \mu_{[1,0]} \ldots \mu_{[m n-2,0]}([m n-2,0],[m n-1,0]) \mu_{[m n-2,0]} \ldots \mu_{[1,0]} \mu_{[0,0]} .
$$

They act on the coefficients as

$$
s_{0}\left(y_{[i, 0]}\right)=\frac{\sum_{i_{1}=0}^{2 n-1} \prod_{i_{2}=0}^{i_{1}-1} y_{\left[i+i_{2}, 0\right]}}{\sum_{i_{1}=0}^{2 n-1} \prod_{i_{2}=0}^{i_{1}} y_{\left[i+i_{2}+1,0\right]}}, \quad s_{0}\left(y_{[i, 1]}\right)=y_{[i, 0]} y_{[i, 1]} \frac{\sum_{i_{1}=0}^{2 n-1} \prod_{i_{2}=0}^{i_{1}} y_{\left[i+i_{2}+1,0\right]}}{\sum_{i_{1}=0}^{2 n-1} \prod_{i_{2}=0}^{i_{1}-1} y_{\left[i+i_{2}, 0\right]}},
$$

for $m=2$ and

$$
\begin{aligned}
& s_{0}\left(y_{[i, 0]}\right)=\frac{\sum_{i_{1}=0}^{m n-1} \prod_{i_{2}=0}^{i_{1}-1} y_{\left[i+i_{2}, 0\right]}}{\sum_{i_{1}=0}^{m n-1} \prod_{i_{2}=0}^{i_{1}} y_{\left[i+i_{2}+1,0\right]}}, \quad s_{0}\left(y_{[i, 1]}\right)=y_{[i, 1]} \frac{\sum_{i_{1}=0}^{m n-1} \prod_{i_{2}=0}^{i_{1}} y_{\left[i+i_{2}, 0\right]}}{\sum_{i_{1}=0}^{m n-1} \prod_{i_{2}=0}^{i_{1}-1} y_{\left[i+i_{2}, 0\right]}}, \\
& s_{0}\left(y_{[i,-1]}\right)=y_{[i,-1]} \frac{\sum_{i_{1}=0}^{m n-1} \prod_{i_{2}=0}^{i_{1}} y_{\left[i+i_{2}+1,0\right]}}{\sum_{i_{1}=0}^{m n-1} \prod_{i_{2}=0}^{i_{1}-1} y_{\left[i+i_{2}+1,0\right]}}, \quad s_{0}\left(y_{[i, l]}\right)=y_{[i, l]} \quad(l \neq 0, \pm 1),
\end{aligned}
$$

for $m \geq 3$. We also define simple reflections $s_{1}, \ldots, s_{m-1}$ and $s_{0}^{\prime}, \ldots, s_{m-1}^{\prime}$ by

$$
s_{i}=\pi^{-1} s_{i-1} \pi \quad(i=1, \ldots, m-1)
$$

and

$$
s_{i}^{\prime}=\rho s_{i} \rho \quad(i=0, \ldots, m-1)
$$

The simple reflections and the Dynkin diagram automorphisms act on the parameters as follows:

|  | $r_{i}$ | $s_{k}$ | $s_{k}^{\prime}$ | $\pi$ | $\pi^{\prime}$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $a_{j}$ | $a_{j} a_{i}^{-a_{i j}}$ | $a_{j}$ | $a_{j}$ | $a_{j+1}$ | $a_{j+1}$ | $a_{-j}$ |
| $b_{l}$ | $b_{l}$ | $b_{l} b_{k}^{-b_{k l}}$ | $b_{l}$ | $b_{l+1}$ | $b_{l}$ | $b_{l}^{\prime}$ |
| $b_{l}^{\prime}$ | $b_{l}^{\prime}$ | $b_{l}^{\prime}$ | $b_{l}^{\prime}\left(b_{k}^{\prime}\right)^{-b_{k l}}$ | $b_{l}^{\prime}$ | $b_{l-1}^{\prime}$ | $b_{l}$ |

Here the matrices $\left[a_{i j}\right]_{i, j \in \mathbb{Z}_{m n}}$ and $\left[b_{k l}\right]_{k, l \in \mathbb{Z}_{m}}$ are the generalized Cartan matrices of type $A_{m n-1}^{(1)}$ and $A_{m-1}^{(1)}$ respectively.

## Fact ([Masuda-Okubo-Tsuda 18], [S-Okubo 20])

Let

$$
\begin{aligned}
& G=\left\langle r_{0}, \ldots, r_{m n-1}\right\rangle, \quad H=\left\langle s_{0}, \ldots, s_{m-1}\right\rangle, \quad H^{\prime}=\left\langle s_{0}^{\prime}, \ldots, s_{m-1}^{\prime}\right\rangle \\
& \widetilde{G}=\left\langle G, H, H^{\prime}, \pi, \pi^{\prime}, \rho\right\rangle
\end{aligned}
$$

Then we obtain the following properties:

- $G, H$ and $H^{\prime}$ are isomorphic to $W\left(A_{m n-1}^{(1)}\right), W\left(A_{m-1}^{(1)}\right)$ and $W\left(A_{m-1}^{(1)}\right)$ respectively.
- Any two groups of $G, H, H^{\prime}$ are mutually commutative.
- $\widetilde{G}=\left\langle G, H, H^{\prime}\right\rangle \rtimes\left\langle\pi, \pi^{\prime}, \rho\right\rangle$.


## Translations for $m=2$

Let $m=2$. We define translations $\tau_{1}, \tau_{2}, \tau_{3}$ by

$$
\tau_{1}=s_{1}^{\prime} s_{1} \pi^{\prime} \pi^{-1}, \quad \tau_{2}=r_{i} \ldots r_{2 n-1} \pi r_{1} \ldots r_{i-1} \pi r_{1} \ldots r_{2 n-1}, \quad \tau_{3}=r_{1} \ldots r_{2 n-1} s_{1} \pi
$$

They act on the parameters as follows:

$$
\begin{aligned}
& \tau_{1}\left(b_{0}\right)=q b_{0}, \quad \tau_{1}\left(b_{1}\right)=\frac{b_{1}}{q}, \quad \tau_{1}\left(b_{0}^{\prime}\right)=q b_{0}^{\prime}, \quad \tau_{1}\left(b_{1}^{\prime}\right)=\frac{b_{1}^{\prime}}{q} \\
& \tau_{2}\left(a_{0}\right)=\frac{a_{0}}{q}, \quad \tau_{2}\left(a_{n-1}\right)=q a_{n-1}, \quad \tau_{2}\left(a_{n}\right)=\frac{a_{n}}{q}, \quad \tau_{2}\left(a_{2 n-1}\right)=q a_{2 n-1}, \\
& \tau_{3}\left(a_{0}\right)=q a_{0}, \quad \tau_{3}\left(a_{1}\right)=\frac{a_{1}}{q}, \quad \tau_{3}\left(b_{0}\right)=q b_{0}, \quad \tau_{3}\left(b_{1}\right)=\frac{b_{1}}{q} .
\end{aligned}
$$

## Theorem ([Okubo-S 20])

The translations $\tau_{1}, \tau_{2}, \tau_{3}$ provide higher order $q$-Painlevé systems as follows:

- $\tau_{1}: q-F S T$ system
- $\tau_{2}: q$-Garnier system (of a Sakai's direction)
- $\tau_{3}: q$-Garnier system (of a Nagao-Yamada's direction)

2 Higher order generalization
(3) Degeneration structure

## Confluence of quiver

We define a confluence of vertices of a quiver $i \rightarrow j$ by replacing two vertices $i, j$ and an arrow between them with one vertex $j$.


At the level of a skew-symmetric matrix, the confluence can be interpreted as follows:
(1) Add the $i$-th row to the $j$-th row.
(2) Add the $i$-th column to the $j$-th column.
(3) Delete the $i$-th row and the $i$-th column.

$$
\left(\begin{array}{cccc}
0 & -1 & -1 & 1 \\
1 & 0 & -1 & 1 \\
1 & 1 & 0 & -1 \\
-1 & -1 & 1 & 0
\end{array}\right) \xrightarrow{4 \rightarrow 1}\left(\begin{array}{ccc}
0 & -2 & 0 \\
2 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

## Degeneration of $q$-Painlevé equation

There exist the following degeneration structure between the $q$-Painlevé equations:


The degenerations from $D_{5}$ to $A_{0}$ are derived from confluences of vertices of quivers as follows ([S-Okubo 20]):


## Remark

We haven't derived the degeneration $E_{8} \rightarrow E_{7}$ from confluences of vertices of quivers yet.


Figure: Quiver $Q_{D_{5}}$
The quiver $Q_{D_{5}}$ is invariant under compositions of mutations and permutations

$$
\begin{array}{ll}
r_{0}=(1,4), & r_{1}=(2,3), \quad r_{2}=\mu_{1}(1,2) \mu_{1}, \quad r_{3}=\mu_{5}(5,6) \mu_{5}, \quad r_{4}=(5,8), \\
r_{5}=(6,7), & \pi_{1}=(1,5,2,6)(4,8,3,7), \quad \pi_{2}=(1,2)(3,4)(5,6)(7,8)
\end{array}
$$

## Fact ([Bershtein-Gavrylenko-Marshakov 18])

A semi-direct product of groups $\left\langle r_{0}, \ldots, r_{5}\right\rangle \rtimes\left\langle\pi_{1}, \pi_{2}\right\rangle$ is isomorphic to an extended affine Weyl group of type $D_{5}^{(1)}$.

## Remark ([Sakai 01], [Tsuda-Masuda 06])

A translation $\pi_{1} r_{2} r_{1} r_{0} r_{2} r_{3} r_{5} r_{4} r_{3}$ provides the $q$-Painlevé $V I$ equation.
The parameters corresponding to the multiplicative simple roots are given by

$$
\alpha_{0}=\frac{y_{4}}{y_{1}}, \quad \alpha_{1}=\frac{y_{3}}{y_{2}}, \quad \alpha_{2}=y_{1} y_{2}, \quad \alpha_{3}=y_{5} y_{6}, \quad \alpha_{4}=\frac{y_{8}}{y_{5}}, \quad \alpha_{5}=\frac{y_{7}}{y_{6}} .
$$



Figure: Quiver $Q_{A_{4}}$

The quiver $Q_{A_{4}}$ is invariant under compositions of mutations and permutations

$$
\begin{aligned}
& r_{0}=\mu_{1} \mu_{2}(2,6) \mu_{2} \mu_{1}, \quad r_{1}=(2,3), \quad r_{2}=\mu_{2}(2,4) \mu_{2}, \quad r_{3}=\mu_{5}(5,6) \mu_{5} \\
& r_{4}=(6,7), \quad \pi_{1}=(1,5,3,7,4)(2,6) \mu_{2}
\end{aligned}
$$

## Fact ([Bershtein-Gavrylenko-Marshakov 18])

A semi-direct product of groups $\left\langle r_{0}, \ldots, r_{4}\right\rangle \rtimes\left\langle\pi_{1}\right\rangle$ is isomorphic to an extended affine Weyl group of type $A_{4}^{(1)}$.

The parameters corresponding to the simple roots are given by

$$
\alpha_{0}=y_{1} y_{2} y_{6}, \quad \alpha_{1}=\frac{y_{3}}{y_{2}}, \quad \alpha_{2}=y_{2} y_{4}, \quad \alpha_{3}=y_{5} y_{6}, \quad \alpha_{4}=\frac{y_{7}}{y_{6}}
$$

In the confluence $8 \rightarrow 1$ a degeneration of the coefficients is given by a replacement

$$
y_{1} \rightarrow y_{1} / \varepsilon, \quad y_{8} \rightarrow \varepsilon,
$$

and taking a limit $\varepsilon \rightarrow 0$. This limiting procedure induces a degeneration of the simple reflections as follows:

| $Q_{D_{5}}$ | $r_{2} r_{4} r_{3} r_{4} r_{2}=\mu_{1} \mu_{8} \mu_{2}(2,6) \mu_{2} \mu_{8} \mu_{1}$ | $r_{1}$ | $r_{0} r_{2} r_{0}$ | $r_{3}$ | $r_{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Q_{A_{4}}$ | $r_{0}$ | $r_{1}$ | $r_{2}$ | $r_{3}$ | $r_{4}$ |

For example, the action $r_{2} r_{4} r_{3} r_{4} r_{2}\left(y_{1} y_{8}\right)$ in $Q_{D_{5}}$ is reduced to the one $r_{0}\left(y_{1}\right)$ in $Q_{A_{4}}$ as follows:

$$
\begin{aligned}
r_{2} r_{4} r_{3} r_{4} r_{2}\left(y_{1} y_{8}\right) & =\frac{\left(1+y_{1}+y_{1} y_{6}+y_{1} y_{6} y_{2}\right)\left(1+y_{8}+y_{8} y_{1}+y_{8} y_{1} y_{6}\right)}{y_{1} y_{6}\left(1+y_{2}+y_{2} y_{8}+y_{2} y_{8} y_{1}\right)\left(1+y_{6}+y_{6} y_{2}+y_{6} y_{2} y_{8}\right)} \\
& \xrightarrow[\substack{y_{1} \rightarrow y_{1} / \varepsilon \\
y_{8} \rightarrow \varepsilon}]{ } \frac{\left(\varepsilon+y_{1}+y_{1} y_{6}+y_{1} y_{6} y_{2}\right)\left(1+\varepsilon+y_{1}+y_{1} y_{6}\right)}{y_{1} y_{6}\left(1+y_{2}+y_{2} \varepsilon+y_{2} y_{1}\right)\left(1+y_{6}+y_{6} y_{2}+y_{6} y_{2} \varepsilon\right)} \\
& \xrightarrow{\varepsilon \rightarrow 0} \frac{1+y_{1}+y_{1} y_{6}}{y_{6}\left(1+y_{2}+y_{2} y_{1}\right)} \\
& =r_{0}\left(y_{1}\right) .
\end{aligned}
$$

## Remark

We haven't clarified degenerations of the Dynkin diagram automorphisms $\pi_{1}, \pi_{2}$ yet.

## (1) Introduction

2 Higher order generalization
(3) Degeneration structure
(4) Conclusion

Toward a classification theory of the continuous/discrete Painlevé systems, we have to consider the following problems.

## Problem

Establish a $q$-analogue of the Katz-Oshima classification theory.

## Problem

Formulate higher order elliptic difference Painlevé systems as the master equations.
It is important to consider the solution.

## Problem

Give a particular solution in terms of the hypergeometric function.

## Problem

Describe the general solution explicitly in the form of the asymptotic expansion.
For those purpose, we expect that the theory of the cluster algebra is a powerful tool.
Thank you for your attention.

