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Frieze patterns

Definition (Frieze pattern)
In mathematics, a frieze or frieze pattern is a two-dimensional design that repeats
in one direction. Such patterns occur frequently in architecture and decorative art.
— From Wikipedia

Figure: Examples of frieze patterns

The sequence of integers {. . . ,−2,−1, 0, 1, 2, . . . , } is also a frieze pattern in the
sense that we know how to "repeat": an+1 = an + 1.
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Figure: Frieze patterns in architecture
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§1. Various frieze patterns associated to a Cartan matrix
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A = (ai,j): r × r symmetrizable Cartan matrix, e.g., A =

[
2 −3
−5 2

]
;

[1, r ] := {1, 2, . . . , r} and [a]+ := max(0, a) for a ∈ R;

A mesh in the infinite strip Z× [1, r ] is a diagram of the form

V<i

��
(m, i)

��

88

(m + 1, i)

V>i

88

where V>i = {(m, j) | j > i , aj,i 6= 0} and V<i = {(m+1, j) | j < i , aj,i 6= 0}.

We are interested in the maps f : Z× [1, r ]→ R (ring) associated to A
satisfying certain "mesh type" relations.

Peigen Cao (HKU) Cluster-additive functions March 22–24, 2023 5 / 31



Generic frieze pattern
The generic frieze pattern associated to A is the (unique) map

uA : Z× [1, r ]→ Q(x1, . . . , xr )

such that

(a) uA(0, i) = xi for i = 1, . . . , r ;

(b) for each mesh starting from (m, i), we have a cluster type relation:

uA(m, i) · uA(m + 1, i) = 1 +
∏
j>i

uA(m, j)−aj,i ·
∏
j<i

uA(m + 1, j)−aj,i .

∏
j<i uA(m + 1, j)−aj,i

��
uA(m, i)
��

33

uA(m + 1, i)

∏
j>i uA(m, j)−aj,i

33

Remark
Cluster type relations come from cluster mutations at a source or sink vertex.
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Examples of generic frieze pattern

Take A =

[
2 −1
−1 2

]
. Then the generic frieze pattern uA is given

uA =
. . . x1 1+x2

x1
1+x1

x2 x2 . . .

. . . x2 1+x1+x2
x1x2 x1 1+x2

x1 . . .

Take A =

[
2 −3
−1 2

]
. Then

uA =
. . . x1 1+x2

x1
x3
1+(1+x2)2

x2
1 x2

1+x3
1+x2

x1x2 x1 . . .

. . . x2 x3
1+(1+x2)3

x3
1 x2

x6
1+3x3

1 x2+2x3
1+(1+x2)3

x3
1 x2

2

1+x3
1

x2 x2 . . .

In the finite type case, the generic frieze patterns are periodic.

Peigen Cao (HKU) Cluster-additive functions March 22–24, 2023 7 / 31



Tropical frieze pattern
A tropical frieze pattern associated to A is a map f : Z× [1, r ]→ Z such that for
each mesh starting from (m, i), we have a tropical type relation:

f (m, i) + f (m + 1, i) =
[∑

j>i
(−aj,i ) · f (m, j) +

∑
j<i

(−aj,i ) · f (m + 1, j)
]
+
.

We can compare it with cluster type relation:

uA(m, i) · uA(m + 1, i) = 1 +
∏
j>i

uA(m, j)−aj,i ·
∏
j<i

uA(m + 1, j)−aj,i .

Remark
(i) Tropical frieze patterns were introduced and studied in [Guo’ 13];

(ii) Tropical type relations are obtained from the cluster type relations by
tropicalization over (Z,+,max);

(iii) Such relations are closely related with the final-seed mutation rule at sink or
source vertices for d-vectors in cluster algebras;
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Additive function

An additive function or additive frieze pattern associated to A is a map
f : Z× [1, r ]→ Z such that for each mesh starting from (m, i), we have an
additive relation:

f (m, i) + f (m + 1, i) =
∑
j>i

(−aj,i ) · f (m, j) +
∑
j<i

(−aj,i ) · f (m + 1, j).

We can compare it with tropical type relation:

f (m, i) + f (m + 1, i) =
[∑

j>i
(−aj,i ) · f (m, j) +

∑
j<i

(−aj,i ) · f (m + 1, j)
]
+
.

Remark
Zr -valued additive functions naturally appear in representation theory by taking
Grothendieck group.
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Cluster-additive function
A cluster-additive function associated to A is a map f : Z× [1, r ]→ Z such that
for each mesh starting from (m, i), we have a cluster-additive relation:

f (m, i) + f (m + 1, i) =
∑
j>i

(−aj,i ) ·
[
f (m, j)

]
+

+
∑
j<i

(−aj,i ) ·
[
f (m + 1, j)

]
+
.

We can compare it with tropical type relation:

f (m, i) + f (m + 1, i) =
[∑

j>i
(−aj,i ) · f (m, j) +

∑
j<i

(−aj,i ) · f (m + 1, j)
]
+
.

Aim (i): Try to understand the cluster-additive relations introduced by
[Ringel’12]. Where such relations come from?

Answers: They come from

(a) sequence of initial-seed mutations for g-vectors;

(b) sequence of mutations for coefficients row;

(c) initial-seed mutation rule for d-vectors at sink or source vertices.
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§2. Ringel’s results and conjectures
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Ringel’s bijection and cluster-hammock functions

Theorem (Ringel’s bijection, [Ringel’12])
For each given m ∈ Z, there is a natural bijection between the cluster-additive
functions associated to A and the points in Zr , given by the restriction to m-th
slice

f 7→ (f (m, 1), f (m, 2), . . . , f (m, r))T ∈ Zr .

For each vertex (m, i), we have a unique cluster-additive function h(m,i) such
that the restriction of h(m,i) to the m-th slice is −ei , where ei is the i-th
column of the identity matrix Ir .

We call h(m,i) the cluster-hammock function at vertex (m, i).

Cluster-hammock functions look like:

. . . ∗ 0 ∗ . . .

. . . ∗ −1 ∗ . . .

. . . ∗ 0 ∗ . . .
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“Cone structure" on cluster-additive functions
Let f , g : Z× [1, r ]→ Z be two cluster-additive functions associated to A.
f and g are said to be compatible (or sign-coherent) if f (m, i) · g(m, i) ≥ 0
for any (m, i) ∈ Z× [1, r ].

Theorem ([Ringel’12])
Let f1, . . . , fm be cluster-additive functions associated to A. Then the sum
f1 + . . .+ fm is cluster-additive if and only if any two of them are compatible.

As a set, cluster-additive functions are in bijection with the points in Zr .
However, the set of cluster-additive functions has no natural linear structure;
Ringel’s theorem tells us that the set of cluster-additive functions has some
“cone structure".
Aim (ii): try to understand this cone structure from the cluster theory.
One result is that: under certain bijection, every g-vector cone can be
identified with a subcone of the cone structure of cluster-additive functions.
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Ringel’s first conjecture

Take A =

[
2 −3
−1 2

]
. The following are two examples of cluster-additive

functions associated to A.

f1 =
. . . 5 6 1 −1 5 . . .
. . . 11 7 −4 4 11 . . .

f2 =
. . . 7 6 −1 1 7 . . .
. . . 13 5 −5 8 13 . . .

For A above, the generic frieze pattern uA : Z× [1, r ]→ Q(x1, . . . , xr ) is

uA =
. . . x1 1+x2

x1
x3
1+(1+x2)2

x2
1 x2

1+x3
1+x2

x1x2 x1 . . .

. . . x2 x3
1+(1+x2)3

x3
1 x2

x6
1+3x3

1 x2+2x3
1+(1+x2)3

x3
1 x2

2

1+x3
1

x2 x2 . . .

Ringel’s first conjecture: For a finite type Cartan matrix A, if
uA(m, i) = uA(n, j), then f (m, i) = f (n, j) for any cluster-additive function f
associated to A.
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Ringel’s second conjecture
Keep the example before. A =

[
2 −3
−1 2

]
and f1, f2 are cluster-additive

functions associated to A.

f1 =
. . . 5 6 1 −1(3,1) 5 . . .
. . . 11 7 −4(2,2) 4 11 . . .

f2 =
. . . 7 6 −1(2,1) 1 7 . . .
. . . 13 5 −5(2,2) 8 13 . . .

Easy to check f1 = 4h(2,2) + h(3,1) and f2 = 5h(2,2) + h(2,1), where h(m,i) is
the cluster-hammock function at vertex (m, i);
Ringel’s second conjecture: For a finite type Cartan matrix A, any
cluster-additive function f associated to A is a non-negative linear
combination of cluster-hammock functions associated to A.
[Ringel’12] proved his two conjectures in type A and [Guo’ 13] proved
Ringel’s conjectures for type A,D,E .
Both Ringel and Guo studied the cluster-additive functions from the
perspectives of representation theory.
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§3. Cluster algebras part
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Seed pattern

Fix an initial seed Σ = (u,p, B̃), where

B̃ =

(
B
P

)
is an (r + s)× r integer matrix with B skew-symmetrisable.

u = (u1, . . . , ur ) unfrozen part and p = (p1, . . . , ps) frozen part.

Denote by Tr the r -regular tree rooted at a vertex t0.

We can form a seed pattern S := {Σt = (ut ,p, B̃t) | t ∈ Tr} on Tr such that

Σt0 = Σ;

Σt′ = µk(Σt) whenever t t ′k in Tr .
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Tropical points

Definition (Tropical point)
Given a seed pattern S = {Σt | t ∈ Tr}. A tropical point

[g] = {gt ∈ Zr+s | t ∈ Tr}

associated to S is an assignment of a column vector gt ∈ Zr+s to each vertex
t ∈ Tr such that we have an relation of matrix mutation

[B̃t′ , gt′ ] = µk [B̃t , gt ]

for any edge t t ′k in Tr .

Remark
[Nakanishi-Zelevinsky’ 2012] proved that the initial-seed mutation rule for
(extended) g-vectors of cluster variables in S is the same with the transformation
from gt to gt′ given above.
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Acyclic skew-symmetrizable matrix BA

Let A = (ai,j) be a Cartan matrix and denote by

BA =


0 −a1,2 −a1,3 . . . −a1,r

a2,1 0 −a2,3 . . . −a2,r
a3,1 a3,2 0 . . . −a3,r
. . . . . . . . . . . . . . .
ar ,1 ar ,2 ar ,3 . . . 0

 =

[
0 ≥ 0
≤ 0 0

]

the acyclic skew-symmetrizable matrix associated to A.

For the transposed Cartan matrix AT, we have BAT = −BT
A .

Given a skew-symmetrizable matrix B. We say k is a source vertex of B if
the k-th column of B is non-positive.

Easy to see BA = µr . . . µ2µ1(BA) and µr . . . µ2µ1(BA) is a sequence of
mutations at source vertices.
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Acyclic belt
Keep A and BA as before. Let {Σ(BA)

t | t ∈ Tr} be the seed pattern with
trivial coefficients associated to BA.
The r -regular tree Tr rooted at t0 has a unique 2-regular sub-tree T†r with
the following form

· · ·
r−1
−− t(−2,r)

r
−− t(−1,1)

1
−− · · ·

r−1
−− t(−1,r)

r
−− t(0,1)

1
−− t(0,2)

2
−− · · ·

r−1
−− t(0,r)

r
−− t(1,1)

1
−− · · · ,

where each t(m, i) denotes a vertex of Tr and t(0, 1) = t0.

The acyclic belt associated to BA is the collection of seeds on the 2-regular
sub-tree T†r

{Σ(BA)
t | t ∈ T†r } = {Σ(BA)

t(m,i) | (m, i) ∈ Z× [1, r ]}

=

. . . Σ
(BA)
t(m,1) Σ

(BA)
t(m+1,1) . . .

. . .
...

... . . .

. . . Σ
(BA)
t(m,r) Σ

(BA)
t(m+1,r) . . .
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Generic frieze pattern and acyclic belt
Cluster variables on the acyclic belt are exactly the variables appearing in the
generic frieze pattern. More precisely,

Proposition
Given uA : Z× [1, r ]→ Q(u1, . . . , ur ) and {Σ(BA)

t(m,i) | (m, i) ∈ Z× [1, r ]}. Then

(i) uA(m, i) is the i-th cluster variable of seed Σ
(BA)
t(m,i);

(ii) The cluster ut(m,i) of Σ
(BA)
t(m,i) is given by

uA(m + 1, 1)
...

uA(m + 1, i − 1)
uA(m, i)

uA(m, i + 1)
...

uA(m, r)
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§4. Our results
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Cluster-additive functions and tropical points

Keep A and BA as before. Recall BAT = −BT
A .

We will use cluster algebra A(−BT
A ) to study cluster-additive functions

associated to A.

For a tropical point [g] = {gt ∈ Zr | t ∈ Tr} associated to −BT
A , we denote

by g(m, 1), . . . , g(m, r) the diagonal of the matrix [gt(m,1), . . . , gt(m,r)].

Theorem (C.-de St. Germain-Lu)

(i) Given tropical point [g] = {gt ∈ Zr | t ∈ Tr} associated to −BT
A . The map

T[g] : (m, i) 7→ −g(m, i) is a cluster-additive function associated to A. Thus

(T[g](m, 1), . . . ,T[g](m, r)) = −(g(m, 1), . . . , g(m, r)).

(ii) The map T : [g] 7→ T[g] induces a bijection between the tropical points
associated to −BT

A and the cluster-additive functions associated to A.
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d-compatibility degree

For any 0 6= b ∈ A(B̃) and any seed Σt , we have the Laurent expansion

b =
N(u1;t , . . . , ur ;t)

ud1
1;t · · · u

dr
r ;t

,

where N ∈ Z[p][ut ] is coprime with each ui ;t ∈ ut ;

The integer vector (d1, . . . , dr )T is called the d-vector of b w.r.t. seed Σt ;

Each dk only depends on b and uk;t , not depend on the choice of cluster
containing uk;t , c.f., [Cao-Li’ 20].

Call dk the d-compatibility degree of b w.r.t. uk;t and denote it by

(uk;t || b)d := dk .

Next result is using d-compatibility degree give an realization of all the
cluster-addition functions.
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Cluster-additive functions and d-compatibility degree

Let uAT
: Z× [1, r ]→ Q(u1, . . . , ur ) be the generic frieze pattern associated

to the transposed Cartan matrix AT;

Each uAT
(m, i) is actually a cluster variable of A(BAT ) = A(−BT

A );

Theorem (C.-de St. Germain-Lu)
Let [g] be a tropical point associated to −BT

A and T[g] the corresponding
cluster-additive function associated to A. Then there is an element u[g] in
A(−BT

A ) such that
T[g](m, i) = (uAT

(m, i) || u[g])d .

Corollary
Ringel’s first conjecture is true for any Cartan matrix A (even infinite type).

Proof: uA(m, i) = uA(n, j) =⇒ uAT
(m, i) = uAT

(n, j) =⇒ T[g](m, i) = T[g](n, j).
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Sign-coherent set of tropical points

Let B be an r × r skew-symmetrisable matrix and U = {[g(1)], . . . , [g(q)]} be
a finite (multiple) set of tropical points associated to B;

Write [g(i)] = {g(i)
t ∈ Zr | t ∈ Tr} for i = 1, . . . , q and take the formal sum

∑
[g]∈U

[g] := {
q∑

i=1
g(i)

t | t ∈ Tr}.

In general,
∑

[g]∈U [g] does not form a tropical point associated to B.

We say that U = {[g(1)], . . . , [g(q)]} is sign-coherent, if each row of the
matrix [g(1)

t , . . . , g(q)
t ] is either non-negative, or non-positive for each t ∈ Tr .

Easy to check: If U is sign-coherent, then the sum
∑

[g]∈U [g] is still a
tropical point associated to B.
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Sign-coherent decomposition of tropical points

Definition (Sign-coherent decomposition)
Let [g] = [g(1)] + . . .+ [g(q)] be a decomposition of tropical points associated to
B. We say this decomposition is sign-coherent, if

U = {[g(1)], . . . , [g(q)]}

forms a sign-coherent set of tropical points. In this case, we denote by
[g] = [g(1)] ] . . . ] [g(q)].

Each sign-coherent decomposition of tropical points induces a decomposition of
cluster-additive functions. More precisely,

Proposition
If [g] = [g(1)] ] . . . ] [g(q)], then T[g] = T[g(1)] + . . .+ T[g(q)].
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Cluster monomials and tropical points

A monomial in cluster variables from the same cluster is called a cluster
monomial.

Let w ∈ Tr and a ∈ Zr . Denote by [(a,w)] := {gt : t ∈ Tr} the unique
tropical point associated to B determined by gw = a.

Let b = ua
w ∈ A(B) be a cluster monomial in seed Σw . Then b corresponds

to tropical point associated to B via

b 7→ [g(b)] := [(a,w)],

which is well-defined, i.e., it does not depend on the choice of w and a.
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Cluster monomials and cluster-additive functions
Recall that uAT

: Z× [1, r ]→ Q(u1, . . . , ur ) denote the generic frieze pattern
associated to the transposed Cartan matrix AT.

Proposition
Let b = ua

t = ua1
1;t · · · u

ar
r ;t a cluster monomial of A(−BT

A ). Then

(i) T[g(b)](m, i) = (uAT
(m, i) || b)d for any (m, i) ∈ Z× [1, r ];

(ii) T[g(b)] = a1T[g(u1;t)] + . . .+ arT[g(ur ;t)].

(iii) Suppose that uk;t appears in the generic frieze pattern, say, uk;t = uAT
(n, j).

Then T[g(uk;t)] = h(n,j) is the cluster-hammock function at vertex (n, j).

Corollary
Ringel’s second conjecture is true.

Proof: Key reasons: In the finite type case, (i) each cluster-additive function can
be given by a cluster monomial of A(−BT

A ) and (ii) each cluster variable of
A(−BT

A ) corresponds to a cluster-hammock function.
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Duality of d-compatibility degree on the acyclic belt
We mainly use cluster algebra A(−BT

A ) to study the cluster-additive functions
associated to A.

Actually, cluster algebra A(BA) can be also used to study “some" nice
cluster-additive functions associated to A, for example, cluster-hammock
functions.

Theorem (C.-de St. Germain-Lu)
Let h(n,j) be the cluster-hammock function associated to A. Then

(uAT
(m, i) || uAT

(n, j))d = h(n,j)(m, i) = (uA(n, j) || uA(m, i))d .

Namely, for any two cluster variables x , z on the acyclic belt of A(BA), we have

(x || z)d = (z∨ || x∨)d ,

where x∨ and z∨ are the corresponding cluster variables in A(−BT
A ).

In general, the above duality does not hold for arbitrary cluster variables x and z .
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Thank you!
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