Examples of quiver mutation loops and partition q-series related to affine quivers of type A

Michihisa Wakui (Kansai University)

based on the master thesis by Koki Oya (Kansai University)
March 22, 2023
Advances in Cluster Algebras 2023
§1. Introduction
§2. Partition q-series of mutation loops
§3. Partition q-series related to affine quivers of type A-Results in the master thesis by Koki Oya-

§1. Introduction

- Quiver mutations (Formin and Zelevinsky, 2001)

- Partition q-series are defined by using purely combinatorial data (Akishi Kato and Yuji Terashima, 2015):

$$
\gamma=\left\{\begin{array}{l}
\boldsymbol{m}: Q=Q(0) \xrightarrow{\mu_{m_{1}}} Q(1) \xrightarrow{\mu_{m_{2}}} \cdots \xrightarrow{\mu_{m_{T}}} Q(T), \\
\text { (its boundary condition })=(Q(T) \xrightarrow{\sim} Q)
\end{array}\right.
$$

$\longmapsto \quad$ (partition q-series)
[KT1] A. Kato and Y. Terashima, CMP 336 (2015), 811-830.
[KT2] A. Kato and Y. Terashima, CMP 338 (2015), 457-481.

- The origin of partition q-series is cluster partition functions of 3-dimensional gauge theories (Yuji Terashima and Masahito Yamazaki, 2014).
- There are two partition q-series denoted by $Z(\gamma)$ and $Z^{\prime}(\gamma)$; the former contains y-variables and the later does not.
- $Z^{\prime}(\gamma)$ are related to some quantum invariant such as the Kashaev invariant.

for γ induced from $\mu_{c} \circ \mu_{a}$ and the boundary condition given by $2 \pi / 3$-rotation, where $\langle K\rangle_{N}$ is the Kashaev invariant of the figure-eight knot K.
- Kato and Terashima [KT1] show that the "fermionic character formula" conjectured by Kuniba, Nakanishi and Suzuki [KNS] is realized as $Z^{\prime}(\gamma)$ by taking some special quiver and a mutation sequence.
- $Z(\gamma) \in \widehat{\mathbb{A}}_{Q}$, which is a non-commutative algebra that the quantum dilogarithm series inhabit.
- Kato and Terashima [KT2] show that $Z(\gamma)$ for reddening sequences are equivalent to combinatorial DT invariants introduced by Keller [K1, K2, K3].
- There are a few examples of computation of partition q-series [KT1, KT2].
[KNS] A. Kuniba, T. Nakanishi and J. Suzuki, Mod. Phys. Lett. A 8 (1993), 1649-1659.
[K1] B. Keller, On cluster theory and quantum dilogarithm identities, in: "Representations of algebras and related topics", 85-111, 2011.
[K2] B. Keller, Cluster algebras and derived categories, in: "Derived categories in algebraic geometry", 123-183, 2012.
[K3] B. Keller, Quiver mutation and combinatorial DT-invariants, DMTCS Proceedings Series Volume AS, Nancy, France, 2013, 9-20, https://www.irif.fr/~ chapuy/Archives/fpsac13/pdfAbstracts/dmAS0104.pdf.

The aim of my talk:

to explain main results in Oya's master thesis (2023) in Kansai
University: For quivers

systematical examples of special mutation sequences and
boundary conditions are given, and their partition q-series with y-variables are computed, though some cases remain conjecture.

It is remarkable that the Cartan matrices of the (affine) Dynkin diagrams of type A appear in the numerators in coefficients of y-variables in these partition q-series.
[O] Koki Oya, Maximal green sequences and partition series related with affine quivers of type A, (in Japanese), Kansai University, Master thesis, 2023.

§2. Partition q-series of mutation loops

Throughout this talk, any quiver is assumed to be finite and does not have a loop and a 2-cycle.

Definition 2.1 (Quiver mutations)

Let Q be a quiver and k be its vertex. Then a new quiver $\mu_{k}(Q)$ is obtained by the following 3 steps:

1. for each path $i \longrightarrow k \longrightarrow j$, add a new arrow $i \longrightarrow j$,
2. reverse orientations of all arrows adjacent to k,
3. remove the arrows in a maximal set of pairwise disjoint 2-cycles.

From now on, we regard the vertex set Q_{0} as $\{1,2, \ldots, n\}$:

$$
Q_{0}=\{1,2, \ldots, n\} .
$$

A mutation sequence is a finite sequence $\boldsymbol{m}=\left(m_{1}, m_{2}, \ldots, m_{T}\right)$ of vertices of Q.
If the final quiver $\mu_{\boldsymbol{m}}(Q)$ obtained by applying

$$
\mu_{\boldsymbol{m}}:=\mu_{m_{T}} \circ \cdots \circ \mu_{m_{2}} \circ \mu_{m_{1}}
$$

to Q, is isomorphic to the initial quiver Q, then we have a bijection $\varphi: \mu_{\boldsymbol{m}}(Q)_{0} \longrightarrow Q_{0}$. The triplet $\gamma=(Q ; \boldsymbol{m}, \varphi)$ is called a mutation loop, and φ is called the boundary condition of γ.

Example 2.2

Let $Q=\underset{1}{\mathrm{O}} \longrightarrow \mathrm{O}_{2} \longrightarrow \mathrm{O}_{3}$. Then

Thus we have a mutation loop $(Q ; \boldsymbol{m}, \varphi)$, where

$$
\boldsymbol{m}=(2,1), \varphi(3)=1, \varphi(1)=2, \varphi(2)=3
$$

Framed quivers

Given a quiver Q, a new quiver Q^{\sharp} is constructed by adding a new vertex i^{\prime} and arrow $i \longrightarrow i^{\prime}$ for each vertex $i \in Q_{0}$:

$$
Q_{0}^{\sharp}=Q_{0} \sqcup\left\{i^{\prime} \mid i \in Q_{0}\right\}, \quad Q_{1}^{\sharp}=Q_{1} \sqcup\left\{i \longrightarrow i^{\prime} \mid i \in Q_{0}\right\} .
$$

The quiver Q^{\sharp} is called the framed quiver associated with Q, and i^{\prime} is called a frozen vertex of Q^{\sharp}.

Similarly, we have a quiver ${ }^{\sharp} Q$ given by

$$
{ }^{\sharp} Q_{0}=Q_{0} \sqcup\left\{i^{\prime} \mid i \in Q_{0}\right\}, \quad \sharp Q_{1}=Q_{1} \sqcup\left\{i^{\prime} \longrightarrow i \mid i \in Q_{0}\right\} .
$$

The quiver ${ }^{\sharp} Q$ is called the co-framed quiver associated with Q.
Let $\operatorname{Mut}\left(Q^{\sharp}\right)$ be the set of quivers which can be obtained from Q^{\sharp} by applying mutations at non-frozen vertices.

Green and red vertices

Definition 2.3 (Keller [K1]; Brüstle-Dupont-Pérotin [BDP])

Let $R \in \operatorname{Mut}\left(Q^{\sharp}\right)$, and i be a non-frozen vertex of Q^{\sharp}.
(1) i is green in R if there is no arrow from a frozen vertex to i,
(2) i is red in R if there is no arrow from i to a frozen vertex.

Example 2.4

For the quiver $Q=\underset{1}{\mathrm{O}} \longrightarrow \mathrm{O}_{2} \longrightarrow \mathrm{O}_{3}$,

[BDP] T. Brüstle, G. Dupont and M. Pérotin, IMRN 2014, No. 16, 4547-4586.

c-vectors

Let Q be a quiver with n vertices, and $R \in \operatorname{Mut}\left(Q^{\sharp}\right)$. For each $i, j \in Q_{0}$ set

$$
c_{i, j}(R):=\sharp\left\{\alpha \in R_{1} \mid \alpha: i \longrightarrow j^{\prime}\right\}-\sharp\left\{\alpha \in R_{1} \mid \alpha: j^{\prime} \longrightarrow i\right\},
$$

and define the row vector $\boldsymbol{c}_{i}(R)$ by

$$
\boldsymbol{c}_{i}(R):=\left(c_{i, 1}(R), \ldots, c_{i, n}(R)\right)
$$

For $i \in Q_{0}$,
i is green in $R \Longleftrightarrow$ all entries of $\boldsymbol{c}_{i}(R)$ are non-negative, i is red in $R \Longleftrightarrow$ all entries of $\boldsymbol{c}_{i}(R)$ are non-positive.

Theorem 2.5 (sign coherence theorem;
 Derksen-Weyman-Zelevinsky, Nagao, Brüstle-Dupont-Pérotin [BDP])

For all $R \in \operatorname{Mut}\left(Q^{\sharp}\right)$, any vertex in Q is green or red in R.

Let $\boldsymbol{m}=\left(m_{1}, m_{2}, \ldots, m_{T}\right)$ be a mutation sequence of Q, and we set $Q(0):=Q$ and

$$
Q(t):=\left(\mu_{m_{t}} \circ \cdots \circ \mu_{m_{2}} \circ \mu_{m_{1}}\right)(Q)
$$

for $t=1, \ldots, T$. We introduce the sign ε_{t} of the mumation $\mu_{m_{t}}$ by

$$
\varepsilon_{t}= \begin{cases}1 & \left(\text { if } m_{t} \text { is green in } Q(t-1)\right) \\ -1 & \left(\text { if } m_{t} \text { is red in } Q(t-1)\right)\end{cases}
$$

s - and k-variables for $\gamma=\left(Q, m=\left(m_{1}, \ldots, m_{T}\right), \varphi\right)$
(i) For a vertex $i \in Q_{0}$, introduce an s-variable s_{i}.
(ii) In order of $t=1, \ldots, T$, add a new s-variable $s_{m_{t}}^{\prime}$ for m_{t}.
(iii) For a vertex $i \in Q_{0}$, identify s_{i} with the last added s-variable for i in the final quiver under φ.
(iv) For each $t=1, \ldots, T$, define k_{t}, k_{t}^{\vee} by

$$
\begin{gather*}
k_{t}= \begin{cases}s_{m_{t}}+s_{m_{t}}^{\prime}-\sum_{i \rightarrow m_{t}} s_{i} & \left(\text { if } \varepsilon_{t}=1\right), \\
\sum_{m_{t} \rightarrow j} s_{j}-\left(s_{m_{t}}+s_{m_{t}}^{\prime}\right) & \left(\text { if } \varepsilon_{t}=-1\right),\end{cases} \tag{2.1}\\
k_{t}^{\vee}= \begin{cases}s_{m_{t}}+s_{m_{t}}^{\prime}-\sum_{m_{t} \rightarrow j} s_{j} & \left(\text { if } \varepsilon_{t}=1\right), \\
\sum_{i \rightarrow m_{t}} s_{i}-\left(s_{m_{t}}+s_{m_{t}}^{\prime}\right) & \left(\text { if } \varepsilon_{t}=-1\right),\end{cases} \tag{2.2}
\end{gather*}
$$

where $s_{m_{t}}, s_{m_{t}}^{\prime}$ are the last added s-variables for m_{t} in $Q(t-1), Q(t)$, respectively.

If the linear equations (2.1) running over $t=1, \ldots, T$ can be solved with respect to s-variables, then γ is called non-degenerate.
Assume that γ is non-degenerate. Then all k_{t}^{\vee} are expressed by \mathbb{Q}-linear combinations of k_{1}, \ldots, k_{T}.
Let q be an indeterminate. For each t, a weight function $W_{m_{t}}: \mathbf{N}^{T} \longrightarrow \mathbb{Q}\left(q^{\frac{1}{2}}\right)$ and a row vector $\boldsymbol{\alpha}_{t} \in \mathbf{N}^{n}$ are defined by

$$
\begin{aligned}
W_{m_{t}}\left(k_{1}, \ldots, k_{T}\right) & =\frac{q^{\frac{\varepsilon_{t}}{2} k_{t} k_{t}^{\vee}}}{\left(q^{\varepsilon}\right)_{k_{t}}}\left(\left(k_{1}, \ldots, k_{T}\right) \in \mathbf{N}^{T}\right), \\
\boldsymbol{\alpha}_{t} & =\varepsilon_{t} \boldsymbol{c}_{m_{t}}\left(Q(t-1)^{\sharp}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
\left(q^{\varepsilon_{t}}\right)_{k_{t}}=\prod_{i=1}^{k_{t}}\left(1-q^{\varepsilon_{t} i}\right) \tag{2.3}
\end{equation*}
$$

which is called a \boldsymbol{q}-Pochhammer symbol, and $Q(t-1)^{\sharp}=\left(\mu_{m_{t-1}} \circ \cdots \circ \mu_{m_{2}} \circ \mu_{m_{1}}\right)\left(Q^{\sharp}\right)$.

Partition q-series

A partition q-series is defined as an element in the formal quantum affine space $\widehat{\mathbb{A}}_{Q}$ that the quantum dilogarithm series inhabit.

Definition 2.6 (Kato-Terashima [KT2])

Let $\gamma=(Q, \boldsymbol{m}, \varphi)$ be a non-degenerate mutation loop, and $\boldsymbol{m}=\left(m_{1}, \ldots, m_{T}\right)$. The element

$$
\begin{equation*}
Z(\gamma)=\sum_{\boldsymbol{k}=\left(k_{1}, \ldots, k_{T}\right) \in \mathbf{N}^{T}}\left(\prod_{t=1}^{T} W_{m_{t}}(\boldsymbol{k})\right) y^{\sum_{t=1}^{T} k_{t} \boldsymbol{\alpha}_{t}} \in \widehat{\mathbb{A}}_{Q} \tag{2.4}
\end{equation*}
$$

is called the partition q-series associated with γ.
The definition of $\widehat{\mathbb{A}}_{Q}$ would be later explained.

Example 2.7 ($A_{2}^{(1)}$-quiver [KT2])

Let us consider the quiver

$$
Q=\mathrm{o}_{1} \longrightarrow \mathrm{O}_{2} \longrightarrow \mathrm{o}_{3} .
$$

Its framed quiver is

Then

Example 2.7 (continued)

Example 2.7 (continued)

By setting $\boldsymbol{m}=(1,2,3,1)$ and $\varphi=(13)$, we have a mutation loop $\gamma=(Q, \boldsymbol{m}, \varphi)$.
Introduce initial s-variables s_{1}, s_{2}, s_{3}, and s-variables $s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}, s_{1}^{\prime \prime}$ corresponding to the vertices in \boldsymbol{m}. Under the boundary condition $\varphi=(13)$, we identify

$$
s_{1}=s_{3}^{\prime}, \quad s_{2}=s_{2}^{\prime}, \quad s_{3}=s_{1}^{\prime \prime}
$$

Define k-variables k_{1}, \ldots, k_{4} and $k_{1}^{\vee}, \ldots, k_{4}^{\vee}$ as follows:

$$
\begin{array}{ll}
k_{1}=s_{1}+s_{1}^{\prime}-s_{3}, & k_{1}^{\vee}=s_{1}+s_{1}^{\prime}-s_{2}, \\
k_{2}=s_{2}+s_{2}^{\prime}=2 s_{2}, & k_{2}^{\vee}=2 s_{2}-s_{1}^{\prime}, \\
k_{3}=s_{3}+s_{3}^{\prime}-s_{1}^{\prime}=s_{3}+s_{1}-s_{1}^{\prime}, & k_{3}^{\vee}=s_{3}+s_{1}, \\
k_{4}=s_{1}^{\prime}+s_{1}^{\prime \prime}-s_{3}^{\prime}=s_{1}^{\prime}+s_{3}-s_{1}, & k_{4}^{\vee}=s_{1}^{\prime}+s_{3}-s_{2}
\end{array}
$$

Example 2.7 (continued)

These equations can be solved as

$$
s_{1}=\frac{k_{1}+k_{3}}{2}, \quad s_{1}^{\prime}=\frac{k_{1}+k_{4}}{2}, \quad s_{2}=\frac{k_{2}}{2}, \quad s_{3}=\frac{k_{3}+k_{4}}{2} .
$$

Thus γ is non-degenerate, and

$$
\begin{array}{ll}
k_{1}^{\vee}=\frac{2 k_{1}-k_{2}+k_{3}+k_{4}}{2}, & k_{2}^{\vee}=\frac{-k_{1}+2 k_{2}-k_{4}}{2}, \\
k_{3}^{\vee}=\frac{k_{1}+2 k_{3}+k_{4}}{2}, & k_{4}^{\vee}=\frac{k_{1}-k_{2}+k_{3}+2 k_{4}}{2} .
\end{array}
$$

On the other hand,

$$
\begin{aligned}
& \boldsymbol{\alpha}_{1}=\boldsymbol{c}_{1}\left(Q^{\sharp}\right)=(1,0,0), \\
& \boldsymbol{\alpha}_{2}=\boldsymbol{c}_{2}\left(Q(1)^{\sharp}\right)=(0,1,0), \\
& \boldsymbol{\alpha}_{3}=\boldsymbol{c}_{3}\left(Q(2)^{\sharp}\right)=(1,0,1), \\
& \boldsymbol{\alpha}_{4}=\boldsymbol{c}_{4}\left(Q(3)^{\sharp}\right)=(0,0,1) .
\end{aligned}
$$

Example 2.7 (continued)

It follows that

$$
\begin{aligned}
Z(\gamma)= & \sum_{\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \in \mathbf{N}^{4}} \frac{q^{\frac{1}{2}\left(k_{1}^{2}-k_{1} k_{2}+k_{1} k_{3}+k_{1} k_{4}+k_{2}^{2}-k_{2} k_{4}+k_{3}^{2}+k_{3} k_{4}+k_{4}^{2}\right)}}{(q)_{k_{1}}(q)_{k_{2}}(q)_{k_{3}}(q)_{k_{4}}} \\
& \times y^{\left(k_{1}+k_{3}, k_{2}, k_{3}+k_{4}\right)} .
\end{aligned}
$$

The quadratic form of the numerator of the coefficients of y is given by

$$
\frac{1}{4}\left(\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array} k_{4}\right)\left(\begin{array}{rrrr}
2 & -1 & 1 & 1 \\
-1 & 2 & 0 & -1 \\
1 & 0 & 2 & 1 \\
1 & -1 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3} \\
k_{4}
\end{array}\right) .
$$

The non commutative algebra $\widehat{\mathbb{A}}_{Q}$

Let Q be a quiver. For $i, j \in Q_{0}$ we set

$$
b_{i j}(Q)=\sharp\left\{\alpha \in Q_{1} \mid \alpha: i \longrightarrow j\right\}-\sharp\left\{\alpha \in Q_{1} \mid \alpha: j \longrightarrow i\right\} .
$$

A skew-symmetric bilinear form $\langle\rangle:, \mathbf{Z}^{n} \times \mathbf{Z}^{n} \longrightarrow \mathbb{Z}$ is defined by

$$
\begin{equation*}
\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=b_{i j}(Q) \quad\left(i, j \in Q_{0}\right) \tag{2.5}
\end{equation*}
$$

where " e_{1}, \ldots, e_{n} " is the standard basis of

$$
\mathbf{Z}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{Z}(i=1, \ldots, n)\right\}
$$

Consider the commutative algebra $R=\mathbb{Q}\left(q^{\frac{1}{2}}\right)$. Introducing formal symbols y^{α} for all
$\boldsymbol{\alpha} \in \mathbf{N}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbf{Z}^{n} \mid a_{i} \geq 0(i=1, \ldots, n)\right\}$, we define the free R-module

$$
\mathbb{A}_{Q}=\bigoplus_{\boldsymbol{\alpha} \in \mathbf{N}^{n}} R y^{\boldsymbol{\alpha}}
$$

The R-module \mathbb{A}_{Q} is an associative algebra with the product

$$
\begin{equation*}
y^{\boldsymbol{\alpha}} y^{\boldsymbol{\beta}}=q^{\frac{1}{2}\langle\boldsymbol{\alpha}, \boldsymbol{\beta}\rangle} y^{\boldsymbol{\alpha}+\boldsymbol{\beta}} \tag{2.6}
\end{equation*}
$$

and the identity element $1_{\mathbb{A}_{Q}}:=y^{0}$. Since the product of \mathbb{A}_{Q} is compatible with the grading by $y^{\boldsymbol{\alpha}}\left(\boldsymbol{\alpha} \in \mathbf{N}^{n}\right)$ it induces an R-algebra structure on

$$
\widehat{\mathbb{A}}_{Q}:=\prod_{\alpha \in \mathbf{N}^{n}} R y^{\alpha} .
$$

Remark 2.8

Setting $y_{i}:=y^{\boldsymbol{e}_{i}}(i=1, \ldots, n)$,
we have

$$
\begin{aligned}
& y^{\boldsymbol{\alpha}}=q^{-\frac{1}{2}}{ }_{1 \leq i<j \leq n} b_{i j}(Q) \alpha_{i} \alpha_{j} \\
& 1 \\
& y_{i} y_{j}=q^{\alpha_{1}} y_{2}^{b_{i j}(Q)} y_{j} y_{i}
\end{aligned}
$$

for all $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{N}^{n}$ and $i, j \in\{1, \ldots, n\}$.

Combinatorial DT invariants and partition q-series A mutation sequence \boldsymbol{m} of Q is said to be reddening if all vertices in $\mu_{\boldsymbol{m}}(Q)$ are red.

Theorem 2.9 (Keller [K3])

For two reddening sequences $\boldsymbol{m}, \boldsymbol{m}^{\prime}$ of Q, there is an isomorphism $\mu_{\boldsymbol{m}}\left(Q^{\sharp}\right) \longrightarrow \mu_{\boldsymbol{m}^{\prime}}\left(Q^{\sharp}\right)$ whose restriction to the frozen vertices is identity.

Theorem 2.10 (Brüstle-Dupont-Pérotin [BDP])

For a reddening sequence \boldsymbol{m} of Q, there is an isomorphism $\mu_{\boldsymbol{m}}\left(Q^{\sharp}\right) \longrightarrow{ }^{\sharp} Q$ whose restriction to the frozen vertices is identity.

By Theorem 2.10 any reddening sequence \boldsymbol{m} of Q gives rise to a canonical boundary condition $\varphi: \mu_{\boldsymbol{m}}(Q) \longrightarrow Q$. The mutation loop $(Q ; \boldsymbol{m}, \varphi)$ is said to be a reddening mutation loop corresponding to m.

Quantum dilogarithm series $\mathbb{E}(\boldsymbol{y} ; q)$

The quantum dilogarithm series $\mathbb{E}(y ; q)$ is a formal power series in $\mathbb{Q}\left(q^{\frac{1}{2}}\right)[[y]]$ defined by

$$
\begin{equation*}
\mathbb{E}(y ; q)=\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{\frac{k}{2}}}{(q)_{k}} y^{k}=\sum_{k=0}^{\infty} \frac{q^{-\frac{k^{2}}{2}}}{\left(q^{-1}\right)_{k}} y^{k} \tag{2.7}
\end{equation*}
$$

For $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{N}^{n}$ and $\varepsilon \in\{ \pm 1\}$ we set

$$
\begin{equation*}
\mathbb{E}\left(y^{\boldsymbol{\alpha}} ; q^{\varepsilon}\right)=\sum_{k=0}^{\infty} \frac{q^{-\varepsilon \frac{k^{2}}{2}}}{\left(q^{-\varepsilon}\right)_{k}} y^{k \boldsymbol{\alpha}} \tag{2.8}
\end{equation*}
$$

Furthermore, for a mutation sequence $\boldsymbol{m}=\left(m_{1}, \ldots, m_{T}\right)$ of Q, we define $\mathbb{E}(Q ; \boldsymbol{m}) \in \widehat{\mathbb{A}}_{Q}$ by

$$
\begin{equation*}
\mathbb{E}(Q ; \boldsymbol{m}):=\mathbb{E}\left(y^{\boldsymbol{\alpha}_{1}} ; q^{\varepsilon_{1}}\right) \mathbb{E}\left(y^{\boldsymbol{\alpha}_{2}} ; q^{\varepsilon_{2}}\right) \cdots \mathbb{E}\left(y^{\boldsymbol{\alpha}_{T}} ; q^{\varepsilon_{T}}\right) \tag{2.9}
\end{equation*}
$$

Theorem 2.11 (Keller [K2]; Nagao)

Let $\boldsymbol{m}, \boldsymbol{m}^{\prime}$ be two mutation sequences of Q. If there is an isomorphism $\mu_{\boldsymbol{m}}\left(Q^{\sharp}\right) \longrightarrow \mu_{\boldsymbol{m}^{\prime}}\left(Q^{\sharp}\right)$ whose restriction to the frozen vertices is identity, then $\mathbb{E}(Q ; \boldsymbol{m})=\mathbb{E}\left(Q ; \boldsymbol{m}^{\prime}\right)$.

By the above theorem, $\mathbb{E}(Q ; \boldsymbol{m}) \in \widehat{\mathbb{A}}_{Q}$ does not depend on the choice of reddening sequences \boldsymbol{m}. The power series $\mathbb{E}(Q ; \boldsymbol{m})$ is called the combinatorial DT-invariant of Q, which is introduced by Keller.

Theorem 2.12 (Kato-Terashima [KT2])

Let $\gamma=(Q, \boldsymbol{m}, \varphi)$ be a reddening mutation loop. Then

$$
\begin{equation*}
Z(\gamma)=\overline{\mathbb{E}(Q ; \boldsymbol{m})} \tag{2.10}
\end{equation*}
$$

where - in the RHS is the anti-automorphism on $\widehat{\mathbb{A}}_{Q}$ over \mathbb{Q} determined by $\overline{y^{\alpha}}=y^{\alpha}\left(\alpha \in \mathbf{N}^{n}\right), \bar{q}=q^{-1}$, where $n=\sharp Q_{0}$.

Maximal green sequences

The mutation sequence $\boldsymbol{m}=\left(m_{1}, m_{2}, \ldots, m_{T}\right)$ of Q is said to be green if $\varepsilon_{t}=1$, that is, m_{t} is green in $Q(t-1)$ for all t. If all vertices in $Q(T)$ are red, then \boldsymbol{m} is called a maximal green sequence. A maximal green sequence is reddening, however the converse is not true.
§3. Partition q-series related to affine quivers of type A Consider a special A-quiver \vec{A} such as

There are two affinizations of \vec{A} according to whether it has a cycle or not.

Theorem 3.1 (Oya [O])

For the affine A-quiver

$$
Q=0 \longrightarrow \longrightarrow_{2} \longrightarrow \cdots 0_{n}
$$

the mutation sequence $\boldsymbol{m}=(1,2, \ldots, n-1, n)$ is maximal green. The induced boundary condition is id, and the partition q-series of $\gamma=(Q, \boldsymbol{m}, \mathrm{id})$ is given by

Theorem 3.1 (Oya [O] (Continued))

$$
\begin{equation*}
Z(\gamma)=\sum_{\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}} \frac{q^{\frac{1}{2}\left(\sum_{i=1}^{n} k_{i}^{2}-\sum_{i=1}^{n-1} k_{i} k_{i+1}-k_{1} k_{n}\right)}}{(q)_{k_{1}} \cdots(q)_{k_{n}}} y^{\left(k_{1}, \ldots, k_{n}\right)} . \tag{3.1}
\end{equation*}
$$

Remark 3.2

(1) The exponent of the numerator of the coefficient of $y^{\left(k_{1}, \ldots, k_{n}\right)}$ in (3.1) is expressed as

$$
\frac{1}{4} \boldsymbol{k}\left(\begin{array}{cccccc}
2 & -1 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & \ddots & 0 & 0 \\
0 & -1 & 2 & -1 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -1 & 2 & -1 \\
-1 & 0 & \cdots & 0 & -1 & 2
\end{array}\right) \boldsymbol{k}^{\mathrm{T}}
$$

which coincides with the Cartan matrix of type affine A_{n-1}.

Remark 3.2 (Continued)

(2) (Kato and Terashima [KT1])

Let Q be an alternative Dynkin quiver of type A, D or E, and γ be a special mutation loop of Q. Then the partition q-series $Z^{\prime}(\gamma)$ without y variables is given by

$$
Z^{\prime}(\gamma)=\sum_{\boldsymbol{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}} \frac{q^{\boldsymbol{k} C^{-1} \boldsymbol{k}^{\mathrm{T}}}}{(q)_{k_{1}} \cdots(q)_{k_{n}}}
$$

where C is the Cartan matrix of the underlying Dynkin diagram of Q.

Combining Theorems 3.1 and 2.12 we have:

Corollary 3.3

The combinatorial DT invariant associated with the affine A-quiver

is given by

$$
\mathbb{E}(Q, \boldsymbol{m})=\sum_{\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}} \frac{q^{-\frac{1}{2}\left(\sum_{i=1}^{n} k_{i}^{2}-\sum_{i=1}^{n-1} k_{i} k_{i+1}-k_{1} k_{n}\right)}}{\left(q^{-1}\right)_{k_{1}} \cdots\left(q^{-1}\right)_{k_{n}}} y^{\left(k_{1}, \ldots, k_{n}\right)}
$$

where $\boldsymbol{m}=(1,2, \ldots, n-1, n)$.
Some associahedron
Consider the quiver in Theorem 3.1 in the case $n=3$:

$$
Q=\prod_{\substack{3 \\ j_{2}^{0}}}^{\substack{3}}
$$

Then we have the following polyhedron:

Theorem 3.4 (Oya [O])

Let $n \geq 3$, and consider the affine A-quiver

$$
Q=\mathrm{o}_{1} \longrightarrow \mathrm{o}_{2} \longrightarrow \cdots \mathrm{o}_{n} .
$$

Then $\boldsymbol{m}=(1,2, \ldots, n-1, n, n-2, n-3, \ldots, 1)$ is a maximal green sequence of Q, and the induced boundary condition is given by $\varphi=(n n-2 n-3 \cdots 321)$.

Conjecture 3.5 (Oya [O])

For the mutation loop $\gamma=(Q, \boldsymbol{m}, \varphi)$ given in Theorem 3.5,

$$
\begin{equation*}
Z(\gamma)=\sum_{\boldsymbol{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}} \frac{q^{\frac{1}{4} \boldsymbol{k} A \boldsymbol{k}^{\mathrm{T}}}}{(q)_{k_{1}} \cdots(q)_{k_{n}}} y^{\sum_{t=1}^{n} k_{t} \boldsymbol{\alpha}_{t}} \tag{3.2}
\end{equation*}
$$

where

$$
\boldsymbol{\alpha}_{t}= \begin{cases}\boldsymbol{e}_{t} & (1 \leq t \leq n-1), \\ \sum_{i=1}^{2 n-2-t} \boldsymbol{e}_{i}+\boldsymbol{e}_{n} & (n \leq t \leq 2 n-2)\end{cases}
$$

and A is given as follows:

Conjecture 3.5 (Oya [O] (Continued))

$$
A=\left(\begin{array}{c|c}
B & C \\
\hline C^{\mathrm{T}} & D
\end{array}\right)
$$

where

$$
\begin{aligned}
& B=\left(\begin{array}{ccccc}
2 & -1 & & & \mathrm{O} \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
\mathrm{O} & & & -1 & 2
\end{array}\right), \\
& C=\left(\begin{array}{ccccc}
\mathrm{O} & & & 1 & 1 \\
& & 1 & 1 & \\
1 & 1 & . & & \\
0 & -1 & \cdots & -1 & -1
\end{array}\right), D=\left(\begin{array}{ccccc}
2 & 1 & & & 1 \\
1 & 2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & 2 & 1 \\
1 & & & 1 & 2
\end{array}\right) .
\end{aligned}
$$

It is confirmed by Oya that Conjecture 3.5 holds for $n=3,4,5,6$. So, as a corollary we have:

Corollary 3.6

Let $n=3,4,5,6$. The combinatorial DT invariant associated with the affine A-quiver

$$
Q=\underset{1}{\circ} \longrightarrow \mathrm{O}_{2} \longrightarrow \cdots{ }_{n}
$$

is given by

$$
\mathbb{E}(Q, \boldsymbol{m})=\sum_{\boldsymbol{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}} \frac{q^{-\frac{1}{4} \boldsymbol{k} A \boldsymbol{k}^{\mathrm{T}}}}{\left(q^{-1}\right)_{k_{1}} \cdots\left(q^{-1}\right)_{k_{n}}} y^{\sum_{t=1}^{n} k_{t} \boldsymbol{\alpha}_{t}}
$$

where $\boldsymbol{m}=(1,2, \ldots, n-1, n, n-2, n-3, \ldots, 1), \boldsymbol{\alpha}_{t}$ and A are the same given in Conjecture 3.5.

For the quiver obtained by adding one arrow $1 \longrightarrow 2$ to the affine A-quiver with cycle, we have:

Theorem 3.7 (Oya [O])

Let $n \geq 3$, and consider the quiver

Then $\boldsymbol{m}=(1, n, n-1, \ldots, 3,2,4,5, \ldots, n, 1)$ is a maximal green sequence of Q, and the induced boundary condition is $\varphi=(n n-1 \cdots 431)$.

Conjecture 3.8 (Oya [O])

For the mutation loop $\gamma=(Q, \boldsymbol{m}, \varphi)$ given in Theorem 3.7

$$
\begin{equation*}
Z(\gamma)=\sum_{\boldsymbol{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}} \frac{q^{\frac{1}{4} \boldsymbol{k} A \boldsymbol{k}^{\mathrm{T}}}}{(q)_{k_{1}} \cdots(q)_{k_{n}}} y^{\sum_{t=1}^{n} k_{t} \boldsymbol{\alpha}_{t}} \tag{3.3}
\end{equation*}
$$

where A is the following square matrix of size $(2 n-2)$:

Conjecture 3.8 (Oya [O] (Continued))

$$
A=\left(\begin{array}{c|c}
D & C^{\prime} \\
\hline C^{\prime} \mathrm{T} & B
\end{array}\right)
$$

where B, D are the same given in Conjecture 3.5, and

$$
C^{\prime}=\left(\begin{array}{ccccccc}
-2 & \bigcirc & & & & & 1 \\
-2 & & & & 1 & 1 \\
-2 & & & & 1 & 1 & \\
\vdots & & & . . & . . & & \\
-2 & & 1 & 1 & & & \\
-2 & 1 & 1 & & & & \\
-1 & 1 & & & & & \mathrm{O}
\end{array}\right)
$$

It is confirmed by Oya that Conjecture 3.8 holds for $n=3,4,5$.
So, we have:

Corollary 3.9

Let $n=3,4,5$. The combinatorial DT invariant associated with the quiver

$$
Q=\stackrel{\mathrm{o}}{ } \stackrel{\longrightarrow}{\square} \longrightarrow \mathrm{o}_{n}
$$

is given by

$$
\mathbb{E}(Q, \boldsymbol{m})=\sum_{\boldsymbol{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{N}^{n}} \frac{q^{-\frac{1}{4} \boldsymbol{k} A \boldsymbol{k}^{\mathrm{T}}}}{\left(q^{-1}\right)_{k_{1}} \cdots\left(q^{-1}\right)_{k_{n}}} y^{\sum_{t=1}^{n} k_{t} \boldsymbol{\alpha}_{t}},
$$

where $\boldsymbol{m}=(1, n, n-1, \ldots, 3,2,4,5, \ldots, n, 1), \boldsymbol{\alpha}_{t}$ and A are the same given in Conjecture 3.8.

References

[BDP] T. Brüstle, G. Dupont and M. Pérotin, On maximal green sequences, IMRN 2014, No. 16, 4547-4586.
[DWZ] H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), 749-790.
[FZ] S. Formin and Z. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2001), 497-529.
[Ka] A. Kato, Quiver mutation loops and partition q-series, a slide talked at Geoquant ICMAT, Madrid, September 18, 2015.
[KT1] A. Kato and Y. Terashima, Quiver mutation loops and partition q-series, CMP 336 (2015), 811-830.
[KT2] A. Kato and Y. Terashima, Quantum dilogarithms and partition q-series, CMP $\mathbf{3 3 8}$ (2015), 457-481.
[K1] B. Keller, On cluster theory and quantum dilogarithm identities, in: "Representations of algebras and related topics", 85-111, EMS Series of Congress Report, European Mathematical Society, Zürich, 2011.
[K2] B. Keller, Cluster algebras and derived categories, in: "Derived categories in algebraic geometry", 123-183, EMS Series of Congress Report, European Mathematical Society, Zürich, 2012.
[K3] B. Keller, Quiver mutation and combinatorial DT-invariants, DMTCS Proceedings Series Volume AS, Nancy, France, 2013, 9-20, https://www.irif.fr/~ chapuy/Archives/fpsac13/pdfAbstracts/dmAS0104.pdf.
[KNS] A. Kuniba, T. Nakanishi and J. Suzuki, Characters in conformal field theories from thermodynamic Bethe ansatz, Mod. Phys. Lett. A 8 (1993), 1649-1659.
[N] K. Nagao, Donaldson-Thomas theory and cluster algebras, Duke Math. J. 162 (2013), 1313-1367.
[O] K. Oya, Maximal green sequences and partition series related with affine quivers of type A, (in Japanese), Kansai University, Master thesis, 2023.
[TY] Y. Terashima and M. Yamazaki, N=2 theories from cluster algebras, Prog. Theor, Exp. Phys. (2014), 023B01, (37 pages).

