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§1. Introduction

e Quiver mutations (Formin and Zelevinsky, 2001)
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e Partition g¢-series are defined by using purely combinatorial
data (Akishi Kato and Yuji Terashima, 2015):

L [me Q=00 Q) T B ),
(its boundary condition) = (Q(T) = Q)
— (partition g-series)

[KT1] A. Kato and Y. Terashima, CMP 336 (2015), 811-830.
[KT2] A. Kato and Y. Terashima, CMP 338 (2015), 457-481.



e The origin of partition g-series is cluster partition functions
of 3-dimensional gauge theories (Yuji Terashima and
Masahito Yamazaki, 2014).

e There are two partition g-series denoted by Z(v) and Z'(v);
the former contains y-variables and the later does not.
e Z7'() are related to some quantum invariant such as the
Kashaev invariant.
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for v induced from p. o p, and the boundary condition
given by 27 /3-rotation, where (K)y is the Kashaev
invariant of the figure-eight knot K.

[TY] Y. Terashima and M. Yamazaki, Prog. Theor, Exp. Phys. (2014), 023B01, (37 pages).



e Kato and Terashima [KT1] show that the “fermionic
character formula” conjectured by Kuniba, Nakanishi and
Suzuki [KNS] is realized as Z’(vy) by taking some special
quiver and a mutation sequence.

o Z(v) € &Q, which is a non-commutative algebra that the
quantum dilogarithm series inhabit.

e Kato and Terashima [KT2] show that Z(v) for reddening
sequences are equivalent to combinatorial DT invariants
introduced by Keller [K1, K2, K3].

e There are a few examples of computation of partition
g-series [KT1, KT2].

[KNS] A. Kuniba, T. Nakanishi and J. Suzuki, Mod. Phys. Lett. A 8 (1993), 1649-1659.

[K1] B. Keller, On cluster theory and quantum dilogarithm identities, in: “Representations of
algebras and related topics”, 85-111, 2011.

[K2] B. Keller, Cluster algebras and derived categories, in: “Derived categories in algebraic
geometry”, 123-183, 2012.

[K3] B. Keller, Quiver mutation and combinatorial DT-invariants, DMTCS Proceedings Series
Volume AS, Nancy, France, 2013, 9-20, https://www.irif.fr/~
chapuy/Archives/fpsacl3/pdfAbstracts/dmAS0104.pdf.



The aim of my talk:
to explain main results in Oya’s master thesis (2023) in Kansai
University: For quivers
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systematical examples of special mutation sequences and
boundary conditions are given, and their partition g-series with
y-variables are computed, though some cases remain conjecture.

It is remarkable that the Cartan matrices of the (affine) Dynkin
diagrams of type A appear in the numerators in coefficients of
y-variables in these partition g-series.

[O] Koki Oya, Mazimal green sequences and partition series related with affine quivers of type
A, (in Japanese), Kansai University, Master thesis, 2023.



§2. Partition ¢g-series of mutation loops
Throughout this talk, any quiver is assumed to be finite and
does not have a loop and a 2-cycle.

Definition 2.1 (Quiver mutations)

Let @ be a quiver and k be its vertex. Then a new quiver p(Q)
is obtained by the following 3 steps:

1. for each path : — k — j, add a new arrow ¢ —> j,
2. reverse orientations of all arrows adjacent to k,
3. remove the arrows in a maximal set of pairwise disjoint

2-cycles.
Q 12(Q)
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From now on, we regard the vertex set Qo as {1,2,...,n}:

Q0:{1,2,...,7'L}.

A mutation sequence is a finite sequence m = (my, ma, ..., mr)
of vertices of Q).
If the final quiver i, (Q) obtained by applying

Hm = fmp O+ © fhmay O Hmy

to @), is isomorphic to the initial quiver (), then we have a
bijection ¢ : pm (Q)o — Qo. The triplet v = (Q;m, ) is called
a mutation loop, and ¢ is called the boundary condition of ~.



Example 2.2

Let Q = (1) >(2) >(??. Then
Q —2— o¢ 0< o
1 2 3
M . o——0 o
1 2 3
— o >0 >0
33 1 2

Thus we have a mutation loop (Q;m, ), where

m=(2,1), ¥3) =1, p(1) = 2, (2) = 3.



Framed quivers
Given a quiver Q, a new quiver QF is constructed by adding a
new vertex ¢ and arrow i — 4’ for each vertex i € Qy:

Qh=Qou{i|icQ}, Q=Qiu{i—i]icQ}

The quiver Q! is called the framed quiver associated with Q,
and 7’ is called a frozen vertex of QF.

Similarly, we have a quiver !Q given by
"Qo=QU{i|ic€Qo}, *Qqr=Qiu{i—ilicQ}
The quiver ?Q is called the co-framed quiver associated with Q.

Let Mut(Q¥) be the set of quivers which can be obtained from
Q' by applying mutations at non-frozen vertices.



Green and red vertices

Definition 2.3 (Keller [K1]; Briistle-Dupont-Pérotin

[BDP])
Let R € Mut(Q?), and i be a non-frozen vertex of Q.

(1) ¢ 1is green in R if there is no arrow from a frozen vertex to ¢,
(2) i is red in R if there is no arrow from ¢ to a frozen vertex.

Example 2.4

For the quiver Q) = ° >0
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[BDP] T. Briistle, G. Dupont and M. Pérotin, IMRN 2014, No. 16, 4547-4586.



c-vectors
Let @ be a quiver with n vertices, and R € Mut(Q*). For each

1,7 € Qo set
cij(R)=t{aeR |a:i—j }—t{acR |a:j —il,
and define the row vector ¢;(R) by

CZ(R) = (62'71(R), . ,Ci’n(R)).
For ¢ € Qo,

iis green in R <= all entries of ¢;(R) are non-negative,

iisred in R <= all entries of ¢;(R) are non-positive.

Theorem 2.5 (sign coherence theorem:;

Derksen-Weyman-Zelevinsky, Nagao,
Briistle-Dupont-Pérotin [BDP])

For all R € Mut(Q*), any vertex in @ is green or red in R.



Let m = (my,ma,...,mp) be a mutation sequence of @, and

we set Q(0) := @ and

Q(t) = (:U’mt O+ 0 my © le)(Q)

for t =1,...,7. We introduce the sign &; of the mumation fy,,
by
)1 (if my is green in Q(t — 1)),
R (if my is red in Q(t — 1)).



s- and k-variables for v = (Q,m = (my,...,mr), p)

(i) For a vertex i € Qo, introduce an s-variable s;.

(ii) In order of t = 1,...,T, add a new s-variable s for mq.

(iii) For a vertex i € Qo, identify s; with the last added

s-variable for ¢ in the final quiver under .
(iv) For each t = 1,...,T, define ki, k) by

Smy + S, — 2 Si (if ey = 1),

kt i—my

- > 5j— (Sm, +5p,,) (ifer =—1),

my—j

Sy + 8, — 2, 55 (fer=1),
k;/ _ m¢—j

> Si— (Smy +57,,) (fe=-1),

T—my

where sp,, S,

Q(t —1),Q(t), respectively.

are the last added s-variables for m; in

(2.1)

(2.2)



If the linear equations (2.1) running over ¢t = 1,...,T can be
solved with respect to s-variables, then v is called
non-degenerate.

Assume that « is non-degenerate. Then all k)’ are expressed by
Q-linear combinations of k1,..., kp.

Let ¢ be an indeterminate. For each ¢, a weight function
Wi, : NT — Q(q%) and a row vector a; € N™ are defined by

Lhoky
Wi, (K1, ... kr) = %qff)k
t

Qp = EtCmy, (Q(t - 1)ﬁ)’

((k‘l, cey k‘T) € NT),

where
k¢

(@) = [T =0, (2.3)

i=1
which is called a g-Pochhammer symbol, and
Q(t - 1)‘i = (Mmt—l O+ 0 fmy © Mml)(Qﬁ)'



Partition g-series

A partition g-series is defined as an element in the formal
quantum affine space 1&@ that the quantum dilogarithm series
inhabit.

Definition 2.6 (Kato-Terashima [KT2])

Let v = (@, m, ) be a non-degenerate mutation loop, and
m = (my,...,mp). The element

Z(y) = > (H Wi, (K ) E " e Ro  (24)

k:(k17 >kT)€NT t=1

is called the partition g-series associated with ~.

The definition of &Q would be later explained.



Example 2.7 (Agl)—quiver [K'T2])

Let us consider the quiver

Y= o o=t
Y s Y
? p s
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Example 2.7 (continued)
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Example 2.7 (continued)

By setting m = (1,2,3,1) and ¢ = (1 3), we have a mutation
loop v = (Q, m, ¢).

Introduce initial s-variables s1, so, s3, and s-variables

sh, sh, sk, s] corresponding to the vertices in m. Under the
boundary condition ¢ = (1 3), we identify

/ / 12
S1 :53, 82232, 53:51.

Define k-variables kq,..., ks and kY, ... k) as follows:
/ /
k1281+81—83, /{71/:814—81—32,
/ /
ko = s2 + sy = 259, k:2v:282—31,
/ / !
ks = s3 + s3 — 51 = 53 + 51 — 87, kg/233+sl,

/ " / / V /
ky = s + 5] — s3 =57 + 53 — s1, ki = s+ s3 — 52



Example 2.7 (continued)

These equations can be solved as

ki+k ki +k k ks + k
31:%, s, = 172L L. e 3J2r 4

Thus v is non-degenerate, and

szzkl_k2+k3+k4 k;/:—k1+2k2—k4

2 t 2 )
Ry = F1d2ks + Ry BV — k1 — ko4 k3 + 2k

3 2 ’ 4 2 .
On the other hand,

a1 = Cl(Qﬁ) = (17070))

az = e2(Q(1)*) = (0, 1,0),

a3 = c3(Q(2)%) = (1,0,1),

oy = ci(Q(3)F) = (0,0,1).



Example 2.7 (continued)
It follows that

Zy= Y,

(k1,k2,k3, k) EN4

q%(kf—k1k2+k1k3+k1 ka-+k3—koka+k3+kska+k3)
(@) k1 (D ks (D (D ke

« y(kl +ks3,k2,k3+ka)

The quadratic form of the numerator of the coefficients of y is

given by
2 -1 1 1 k1
1 —1 2 0 -1 ko
glhikeksk)l 1 ¢ o9 ks
1 -1 1 2 ky



The non commutative algebra :‘&Q
Let Q be a quiver. For i,j € Qg we set

bij(Q)=t{ace|a:i—j}—t{acQ|a:j— i}

A skew-symmetric bilinear form ( , ):Z" X Z" — Z is
defined by

(ei,ej) =bi;(Q) (4,5 € Qo), (2.5)
where “eq,...,e,” is the standard basis of
7" ={(a1,...,ap) |, €Z (i=1,...,n) }.

Consider the commutative algebra R = Q(q%). Introducing
formal symbols y for all

aeN'"={(a,...,an) €Z" | a; >0 (i=1,...,n) }, we
define the free R-module

Ag = @ Ry~.

aeN”



The R-module Ag is an associative algebra with the product
yoyP = qzlaP)yats (2.6)

and the identity element 1, := yY. Since the product of Ay is
compatible with the grading by y® (a € N™) it induces an
R-algebra structure on

&Q = H Ry“.
acN"?

Remark 2.8
Setting y; :=y® (i =1,...,n),

we have
-3 X bij(Qaiay
ya =q 1<i<j<n y?lySQ 000 yg"’
yiy; = ¢"9 Dy,y;

for all @ = (a1,...,ap) € N" and ¢,5 € {1,...,n}.



Combinatorial DT invariants and partition g-series
A mutation sequence m of @ is said to be reddening if all
vertices in i, (Q) are red.

Theorem 2.9 (Keller [K3])

For two reddening sequences m, m’ of (), there is an
isomorphism iy, (QF) — fm: (QF) whose restriction to the
frozen vertices is identity.

Theorem 2.10 (Briistle-Dupont-Pérotin [BDP])

For a reddening sequence m of @), there is an isomorphism
i (QF) — #Q whose restriction to the frozen vertices is
identity.

By Theorem 2.10 any reddening sequence m of @) gives rise to a
canonical boundary condition ¢ : iy, (Q) — Q. The mutation
loop (Q;m, @) is said to be a reddening mutation loop
corresponding to m.



Quantum dilogarithm series E(y; q)

The quantum dilogarithm series E(y; q) is a formal power series

in Q(¢?)[[y]] defined by

- (‘qug k q_g k
E(y; q) = kZO o Y :;) o (2.7)
For o = (o, ...,0,) € N" and € € {£1} we set
R 6_7_sg ko
E(y*;¢°) = kzo TR (2.8)
Furthermore, for a mutation sequence m = (mq, ..., mr) of Q,

we define E(Q; m)e AQ by

E(Q;m) := E(y™; ¢ )E(y*?;¢%2) - - - E(y*7; ¢°7).

(2.9)



Theorem 2.11 (Keller [K2]; Nagao)

Let m, m’ be two mutation sequences of Q). If there is an
isomorphism iy, (QF) — 1 (QF) whose restriction to the
frozen vertices is identity, then E(Q;m) = E(Q;m/).

By the above theorem, E(Q;m) € I&Q does not depend on the
choice of reddening sequences m. The power series E(Q;m) is
called the combinatorial DT-invariant of (), which is introduced
by Keller.

Theorem 2.12 (Kato-Terashima [KT2])

Let v = (@, m, ) be a reddening mutation loop. Then

Z(y) = E(Q; m), (2.10)

where — in the RHS is the anti-automorphism on AQ over Q

1

determined by y® = y* (o € N"), g = ¢+, where n = §Qo.



Maximal green sequences

The mutation sequence m = (my, ma, ..., my) of @ is said to
be green if ¢, = 1, that is, my is green in Q(t — 1) for all ¢. If all
vertices in Q(T') are red, then m is called a maximal green
sequence. A maximal green sequence is reddening, however the
converse is not true.



§3. Partition ¢-series related to affine quivers of type A

Consider a special A-quiver Z such as
?egﬁ o o o %O

There are two affinizations of Z according to whether it has a
cycle or not.

Theorem 3.1 (Oya [O])

For the affine A-quiver

i 2 n

the mutation sequence m = (1,2,...,n — 1,n) is maximal
green. The induced boundary condition is id, and the partition
g-series of v = (Q, m,id) is given by



Theorem 3.1 (Oya [O] (Continued))

% (i kf_nill kiki+1—k1kn)

=1 i
ALY q yleakn) (31)
(k1,0 skon ) ENT (Dkr = (D

(1) The exponent of the numerator of the coefficient of

y(krkn) ip (3.1) is expressed as

2 -1 0 - 0 -1
-1 2 -1 0 0
lk 0 -1 2 -1 0 [T
Z )
0 0 -1 2 -1
-1 0 -+ 0 -1 2

which coincides with the Cartan matrix of type affine A,,_1.



Remark 3.2 (Continued)

(2) (Kato and Terashima [KT1])
Let @ be an alternative Dynkin quiver of type A, D or F,
and v be a special mutation loop of (). Then the partition
g-series Z'(~y) without y variables is given by

kc—lkT
Z'(y) = 3 I e
k=(k1,...,kn)EN" (q)kl o (q)kn
where C' is the Cartan matrix of the underlying Dynkin
diagram of Q.

Combining Theorems 3.1 and 2.12 we have:



Corollary 3.3

The combinatorial DT invariant associated with the affine

A-quiver

Q= ?—)2% 60 o ;?
is given by

n n—1
~3($ RS ikiga—kika)
E@Qm)= > q T g i)

(k17-~~7kn)€N" q k1 q kn

where m = (1,2,...,n— 1,n).

Some associahedron
Consider the quiver in Theorem 3.1 in the case n = 3:



Then we have the following polyhedron:
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Theorem 3.4 (Oya [O])

Let n > 3, and consider the affine A-quiver

Q= o—>o——> ... —o.
Then m = (1,2,...,n—1,n,n—2,n—3,...,1) is a maximal
green sequence of ), and the induced boundary condition is
givenby p=(nn—-2n—-3 --- 321).

Conjecture 3.5 (Oya [O])

For the mutation loop v = (@, m, ¢) given in Theorem 3.5,
LpAkT S P

_ q+ _ yi=1
2 = > @k @D ” o (32

where
€t (1<t<n-1),
o+ =
' Z?Zf%t eit+e, (n<t<2n-—2)

and A is given as follows:



Conjecture 3.5 (Oya [O] (Continued))

et

where
2 -1
-1 2 -1 O
B = )
-1 2 -1
O -1 2
O 1 1 2 1 1
1 1 2 1
C= D=
1 1 O 1 2




It is confirmed by Oya that Conjecture 3.5 holds for
n = 3,4,5,6. So, as a corollary we have:

Corollary 3.6

Let n = 3,4,5,6. The combinatorial DT invariant associated
with the affine A-quiver

Q= o—>o0—> ... —o

n

is given by

— kAT S ko

E(Qv m) - Z q yi=t )

k=(k1,....kn)EN" (qil)kl . (qil)kn

where m = (1,2,...,n—1,n,n—2,n—3,...,1), oy and A are
the same given in Conjecture 3.5.

For the quiver obtained by adding one arrow 1 — 2 to the
affine A-quiver with cycle, we have:



Theorem 3.7 (Oya [O])

Let n > 3, and consider the quiver

T

Q: Oﬁ?% .« .. H?}

1

Then m = (1,n,n—1,...,3,2,4,5,...,n,1) is a maximal green
sequence of @), and the induced boundary condition is
p=MmMn—-1---431).

Conjecture 3.8 (Oya [O])

For the mutation loop v = (@, m, ¢) given in Theorem 3.7

1pART S e
4 t Xt
Z(vy) = > = (3.3)

k=(k1,...,kn)EN™ (@Dry -+ (@

where A is the following square matrix of size (2n — 2):



Conjecture 3.8 (Oya [O] (Continued))

A_DC’
~\cT| B’

where B, D are the same given in Conjecture 3.5, and

2 0 1
—2 11
—2 1 1
C' =
—2 1 1
-2 1 1




It is confirmed by Oya that Conjecture 3.8 holds for n = 3,4, 5.
So, we have:

Corollary 3.9

Let n = 3,4,5. The combinatorial DT invariant associated with
the quiver

2 n
is given by
—1kAET S krou

EQm)= > 4 y=

k=(k1,....kn)EN™ (qil)kl r (qil)kn

where m = (1,n,n—1,...,3,2,4,5,...,n,1), oy and A are the
same given in Conjecture 3.8.
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