Cluster transformations, the tetrahedron equation and three-dimensional gauge theories

Junya Yagi

Yau Mathematical Sciences Center, Tsinghua University

March 23, 2023
Advances in Cluster Algebras 2023
Based on joint work with Xiao-yue Sun [arXiv:2211.10702]

Lattice spin model in classical statistical mechanics:

Spectral parameters $z_{1}, z_{2}, \ldots, z_{m+n} \in \mathbb{C}$ assigned to lines
Spin variables $O \in\{1,2, \ldots, N\}$ on edges interact at vertices.
Energy of a spin configuration is a sum of local energies:

R-matrix $R(z, w)=\left(R(z, w)_{i j}^{k l}\right) \in \operatorname{End}\left(V^{\otimes 2}\right), \operatorname{dim} V=N$

For special models, R satisfies the Yang-Baxter equation (YBE)

$$
\begin{aligned}
& R_{23}\left(z_{2}-z_{3}\right) R_{13}\left(z_{2}-z_{3}\right) R_{12}\left(z_{1}-z_{2}\right) \\
& \quad=R_{12}\left(z_{1}-z_{2}\right) R_{13}\left(z_{1}-z_{3}\right) R_{23}\left(z_{2}-z_{3}\right) \in \operatorname{End}\left(V^{\otimes 3}\right) .
\end{aligned}
$$

Equality between two configurations of 3 lines in \mathbb{R}^{2} :

YBE with spectral parameters implies integrability:

- 2D classical lattice model $\leftrightarrow(1+1)$ D quantum spin chain
- Commuting conserved charges acting on the Hilbert space, generating the center of the Yangian.

In the past 15 years, YBE has appeared in many supersymmetric quantum field theories (SUSY QFTs):

- 2D $\mathcal{N}=(2,2)$ SUSY gauge theories [Nekraso-Shataskvili]
- $4 \mathrm{D} \mathcal{N}=2$ SUSY gauge theories [Nerasoov-Shatashvili]
- 3D $\mathcal{N}=4$ SUSY gauge theories
[Bullimore-Dimofte-Gaiotto, Braverman-Finkelberg-Nakajima]
- 4D $\mathcal{N}=1$ SUSY gauge theories
[Gaiotto-Rastelli-Razamat, Gadde-Gukov, Maruyoshi-Y]
- 4D Chern-Simons theory (= Ω-deformed 6D MSYM)
[Costello, Costello-Witten-Yamazaki]

All of these have realization in string theory and are related by dualities. [Costello-Y]

3D analog of YBE: tetrahedron equation (TE) [Zamolodchikov '80]

$$
R_{234} R_{134} R_{124} R_{123}=R_{123} R_{124} R_{134} R_{234}
$$

Equality between two configurations of 4 planes in \mathbb{R}^{3} :

Relatively long history. (Before BPZ on 2D CFT!)
Far less developed than YBE. (Only one book [Kuniba '22] on TE!)
But it could be as rich. (Recent progress from the viewpoint of quantized coordinate rings [Kapranov-Voevodsky, Kuniba-Okado, ...])

Reminder: we live in 3D space!

A well-known solution of TE [Kapranov-Voevodsky, Bazhanov-Sergeev] and its super version [Sergeev, Yoneyama] are conjectured to arise from a brane system in M-theory [$\mathrm{Y}^{\prime} 22$].

Today: my work with Xiao-yue Sun [2211.10702], where we

- constructed solutions of TE using trivial cluster transformations; and
- expressed them as partition functions of 3D $\mathcal{N}=2$ SUSY gauge theories on S^{3}.

First time for TE to appear in gauge theory. ${ }^{1}$
Should be related to 3-manifolds ("3D-3D correspondence").

[^0]Symmetric group S_{n} : group of permutations on $\{1,2, \ldots, n\}$, generated by the adjacent transpositions $\left\{s_{a}\right\}_{a=1}^{n-1}$ satisfying

$$
\begin{array}{ll}
s_{a}^{2}=1 \\
s_{a} s_{b}=s_{b} s_{a} \text { for }|a-b| \geq 2 & \text { (far commutativity) } \\
s_{a} s_{a+1} s_{a}=s_{a+1} s_{a} s_{a+1} & \text { (braid relation) }
\end{array}
$$

An expression $s_{a_{1}} s_{a_{2}} \cdots s_{a_{k}}$ can be represented by a wiring diagram. E.g.

$$
s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}=
$$

This is a reduced expression for the longest element of S^{4}

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right)
$$

To a wiring diagram we assign three quivers, which we call the triangle quiver, square quiver and butterfly quiver:

1. Around each crossing place vertices and arrows as follows:

2. Delete 2-cycles:

3. Label vertices.
E.g. the three quivers assigned to $s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}$ (labels omitted):

From now on we only consider the square quiver.

A quiver (or "seed") $\Sigma=(I, \varepsilon)$:

- vertices indexed by a set I
- \# arrows $i \xrightarrow{\varepsilon_{i j}} j$ encoded in an antisymmetric matrix ε

A mutation μ_{k} at $k \in I$ transforms Σ to $\Sigma^{\prime}=\left(I, \varepsilon^{\prime}\right)$:

1. For each $i \rightarrow k \rightarrow j$, draw an arrow $i \rightarrow j$.
2. Change $i \rightarrow k$ to $i \leftarrow k$.
3. Delete 2-cycles.

An automorphism $\alpha: \Sigma \rightarrow \Sigma^{\prime}$ permutes vertices: $\varepsilon_{\alpha(i) \alpha(j)}^{\prime}=\varepsilon_{i j}$.
A cluster transformation $\mathbf{c}: \Sigma \rightarrow \Sigma^{\prime}$ is a composition of mutations and automorphisms; it can be put in the form

$$
\mathbf{c}: \Sigma=: \Sigma[1] \xrightarrow{\mu_{k[1]}} \Sigma[2] \xrightarrow{\mu_{k[2]}} \cdots \xrightarrow{\mu_{k[L]}} \Sigma[L+1] \xrightarrow{\alpha} \Sigma^{\prime} .
$$

The braid move

induces a cluster transformation on the assigned quiver:

A quiver specifies a $4 \mathrm{D} \mathcal{N}=1$ SUSY gauge theory:

- vertex i : gauge group $\mathrm{SU}(N)_{i}$
- frozen vertex f : global symmetry group $\operatorname{SU}(N)_{f}$
- arrow $i \rightarrow j$: matter in rep (\square, \square) of $\mathrm{SU}(N)_{i} \times \mathrm{SU}(N)_{j}$

Amalgamation of quivers at frozen vertices
= coupling the corresponding theories by gauging
E.g. the theory specified by $s_{1} s_{2} s_{1}$ is constructed from three theories:

Mutations induce Seiberg duality: theories related by quiver mutations describe the same infrared physics.

A physical quantity X in dual theories $T \cong T^{\vee}$ gives an equality $X[\mathrm{~T}]=X\left[\mathrm{~T}^{\vee}\right]$. In particular,

$$
X\left[\begin{array}{l}
3 \\
2 \\
1 \\
>
\end{array}\right]=X\left[\begin{array}{lll}
3 \\
2 \\
1 \longrightarrow
\end{array}\right] .
$$

For a nice quantity we have decomposition

$$
Z\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}>\right]=Z\left[\begin{array}{l}
2 \\
1
\end{array}\right] \circ Z\left[\begin{array}{l}
3 \\
1
\end{array}\right] \circ Z\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

Thus we obtain a solution of YBE

$$
R_{a b}=Z\left[\begin{array}{l}
b \\
a
\end{array}\right]
$$

E.g. partition function on $S^{1} \times S^{3}$ gives R with spins in $\mathrm{U}(1)^{N-1}$.

Instead of physical quantities, consider the Hilbert space of states \mathcal{H}. Then we get an isomorphism:

The loop of braid moves

shows

$$
R_{234}^{-1} R_{134}^{-1} R_{124}^{-1} R_{123}^{-1} R_{234} R_{134} R_{124} R_{123} \in \operatorname{End}\left(\mathcal{H}\left[\begin{array}{ccc}
\sim
\end{array}\right]\right) .
$$

If this endomorphism is trivial, $R_{a b c}$ solves TE:

$$
R_{234} R_{134} R_{124} R_{123}=R_{123} R_{124} R_{134} R_{234}
$$

I don't know if this is the case for 4D SUSY gauge theories.
But this does happen for 1D bosonic QFTs that arise in the context of quantum cluster varieties [Fock-Goncharov].

Quantum torus algebra \mathbf{D}_{Σ}^{q} :

- formal parameter q
- noncommutative variables $\left(X^{q}, B^{q}\right)=\left(X_{i}^{q}, B_{i}^{q}\right)_{i \in I}$

$$
q^{-\varepsilon_{i j}} X_{i}^{q} X_{j}^{q}=q^{-\varepsilon_{j i}} X_{j}^{q} X_{i}^{q}, \quad q^{-\delta_{i j}} X_{i}^{q} B_{j}^{q}=q^{\delta_{i j}} B_{j}^{q} X_{i}^{q}, \quad B_{i}^{q} B_{j}^{q}=B_{j}^{q} B_{i}^{q} .
$$

c: $\Sigma \rightarrow \Sigma^{\prime}$ induces a quantum cluster transformation

$$
\mathbf{c}^{q}: \mathbb{D}_{\Sigma^{\prime}}^{q} \xrightarrow{\sim} \mathbb{D}_{\Sigma}^{q}
$$

between the fraction fields of \mathbf{D}_{Σ}^{q} and $\mathbf{D}_{\Sigma^{\prime}}^{q}$.
c^{q} quantizes a transition function for the cluster \mathcal{D}-variety, equipped with the Poisson structure

$$
\left\{X_{i}, X_{j}\right\}=\varepsilon_{i j} X_{i} X_{j}, \quad\left\{X_{i}, B_{j}\right\}=\delta_{i j} X_{i} B_{j}, \quad\left\{B_{i}, B_{j}\right\}=0
$$

Heisenberg algebra $\mathbf{H}_{\Sigma}^{\hbar}$:

- formal parameter \hbar
- variables $x^{\hbar}=\left(x_{i}^{\hbar}\right)_{i \in I}, b^{\hbar}=\left(b_{i}^{\hbar}\right)_{i \in I}$

$$
\left[x_{i}^{\hbar}, x_{j}^{\hbar}\right]=2 \pi \mathrm{i} \hbar \varepsilon_{i j}, \quad\left[x_{i}^{\hbar}, b_{j}^{\hbar}\right]=2 \pi \mathrm{i} \hbar \delta_{i j}, \quad\left[b_{i}^{\hbar}, b_{j}^{\hbar}\right]=0 .
$$

We have $\mathbf{D}_{\Sigma}^{q} \hookrightarrow \mathbf{H}_{\Sigma}^{\hbar}$ by

$$
q=\exp (\pi \mathrm{i} \hbar), \quad X_{i}^{q}=\exp \left(x_{i}^{\hbar}\right), \quad B_{i}^{q}=\exp \left(b_{i}^{\hbar}\right) .
$$

$\mathbf{H}_{\Sigma}^{\hbar}$ can be represented on the Hilbert space $\mathcal{H}_{\Sigma}=L^{2}\left(\mathbb{R}^{I}\right)$:

For $\hbar \in \mathbb{R}_{>0}$, this assigns a quantum mechanical system to Σ.
c: $\Sigma \rightarrow \Sigma^{\prime}$ induces duality:

- States are mapped by a unitary operator $\mathbf{K}_{\mathbf{c}}: \mathcal{H}_{\Sigma^{\prime}} \rightarrow \mathcal{H}_{\Sigma}$.
- Operators are mapped by $\mathbf{K}_{\mathbf{c}} \widehat{A} \mathbf{K}_{\mathbf{c}}^{-1}=\widehat{\mathbf{c}^{q}(A)}$.

For an automorphism $\mathbf{c}=\alpha, \mathbf{K}_{\alpha}$ relabels coordinates.
For a mutation $\mathbf{c}=\mu_{k}$, there are two expressions [Kim '21]:

$$
\mathbf{K}_{\mu_{k}}:=\mathbf{K}_{\mu_{k}}^{\sharp(+)} \mathbf{K}_{\mu_{k}}^{\prime(+)}=\mathbf{K}_{\mu_{k}}^{\sharp(-)} \mathbf{K}_{\mu_{k}}^{\prime(-)} .
$$

$\mathbf{K}_{\mu_{k}}^{\prime(\epsilon)}: \mathcal{H}_{\Sigma^{\prime}} \rightarrow \mathcal{H}_{\Sigma}$ is given by

$$
a_{i}^{\prime}= \begin{cases}-a_{k}+\sum_{j \in I}\left[-\epsilon \varepsilon_{k j}\right]+a_{j} & \text { if } i=k \\ a_{i} & \text { if } i \neq k\end{cases}
$$

$\mathbf{K}_{\mu_{k}}^{\sharp(\epsilon)}: \mathcal{H}_{\Sigma} \rightarrow \mathcal{H}_{\Sigma}$ is a product of two noncompact q-dilogs:

$$
\mathbf{K}_{\mu_{k}}^{\sharp(\epsilon)}=\Phi^{\hbar}\left(\epsilon \hat{x}_{k}\right)^{\epsilon} \Phi^{\hbar}\left(\epsilon \hat{\tilde{x}}_{k}\right)^{-\epsilon}, \quad \hat{\tilde{x}}_{i}:=\pi \mathrm{i} \hbar \frac{\partial}{\partial a_{i}}+\sum_{j \in I} \varepsilon_{i j} a_{j} .
$$

Let's say $\mathbf{c}: \Sigma \rightarrow \Sigma$ is trivial if $\mathbf{c}^{q}=\mathrm{id}_{\mathbb{D}_{\Sigma}^{q}}$.
If \mathbf{c} is trivial, $\mathbf{K}_{\mathbf{c}}$ commutes with \widehat{X} and \widehat{B} by construction.
It turns out that $\mathbf{K}_{\mathbf{c}}$ also commutes with $\widehat{X}^{1 / \hbar}$ and $\widehat{B}^{1 / \hbar}$, and this implies $\mathbf{K}_{\mathbf{c}}=\lambda_{\mathbf{c}} \mathrm{id}_{\mathcal{H}_{\mathbf{\Sigma}}}$ for some $\lambda_{\mathbf{c}} \in \mathrm{U}(1)$ [Fock-Goncharov].

Kim showed $\lambda_{\mathbf{c}}=1$ for some important cases. In fact,
If $\mathbf{c}: \Sigma \rightarrow \Sigma$ is trivial, then $\mathbf{K}_{\mathbf{c}}=\mathrm{id}_{\mathcal{H}_{\Sigma}}$.

For c: $\Sigma=: \Sigma[1] \xrightarrow{\mu_{k[1]}} \Sigma[2] \xrightarrow{\mu_{k[2]}} \cdots \xrightarrow{\mu_{k[L]}} \Sigma[L+1] \xrightarrow{\alpha} \Sigma$, we have a choice of signs $(\epsilon[1], \epsilon[2], \ldots, \epsilon[L])$. For the tropical sign sequence, the theorem reduces to a noncompact q-dilog identity [Kashaev-Nakanishi] times its complex conjugate.

For the triangle, square and butterfly quivers, the loop

gives rise to a trivial cluster transformation [Sun-Y].

Need only check that cacts trivially on the tropical variables [Inoue-Iyama-Keller-Kuniba-Nakanishi].

Therefore, $R_{a b c}:=\mathbf{K}_{\beta_{a b c}}$ solves TE.

The matrix element $\left\langle a^{\prime}\right| \mathbf{K}_{\mathbf{c}}|a\rangle$ can be expressed as an integral of q-dilogs [Kashaev-Nakanishi].

The result coincides with an expression of the partition function of a $3 \mathrm{D} \mathcal{N}=2$ SUSY gauge theory on the squashed 3 -sphere

$$
S_{b}^{3}:=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|b| z_{1}\right|^{2}+b^{-1}\left|z_{2}\right|^{2}=1\right\}, \quad b=\sqrt{\hbar} .
$$

Similar to [Terashima-Yamazaki] but we have twice as many q-dilogs.
This theory is a domain wall in 4D $\mathcal{N}=2$ SUSY theories.
We expect that TE holds at the level of domain walls.
Related to 3-manifolds, built from tetrahedra attached to triangulated surfaces.

TE is a 3D analog of YBE, important but not well-understood.
YBE \& TE (\& their higher-dimensional analogs) can be understood in terms of S_{n}, or wiring diagrams:

- For YBE, R-matrices are adjacent transpositions, satisfying $s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$.
- For TE, R-matrices are braid moves $s_{a} s_{a+1} s_{a} \rightarrow s_{a+1} s_{a} s_{a+1}$.

To wiring diagrams we can assign quivers and QFTs such that braid moves are translated to mutations and dualities:

- Partition functions of dual 4D theories give rise to YBE.
- Isomorphisms between Hilbert spaces of dual Fock-Goncharov QM systems are solutions of TE.

These solutions of TE can be identified with S^{3} partition functions of 3D SUSY gauge theories.

Can we produce more solutions of TE?
Can we reproduce known solutions?
Can we understand solutions from 3-manifold viewpoint?
Can we relate this story to wall-crossing of BPS particles in 4D $\mathcal{N}=2$ SUSY QFTs?

Can we say anything about realistic 3D statistical mechanics systems?

[^0]: ${ }^{1}$ RLLL relations had been found to arise from gauge theories and cluster algebras [Yamazaki '16, Gavrylenko-Semenyakin-Zenkevich '20].

