INTRODUCTION 00000 Wires & quivers 0000 Duality, YBE & TE 0000 Quantum CT 0000 CT, TE & 3D gauge theories 00 Conclusions 00

Cluster transformations, the tetrahedron equation and three-dimensional gauge theories

Junya Yagi

Yau Mathematical Sciences Center, Tsinghua University

March 23, 2023

Advances in Cluster Algebras 2023

Based on joint work with Xiao-yue Sun [arXiv:2211.10702]

Lattice spin model in classical statistical mechanics:

Spectral parameters $z_1, z_2, \ldots, z_{m+n} \in \mathbb{C}$ assigned to lines

Spin variables $\bigcirc \in \{1, 2, \dots, N\}$ on edges interact at vertices.

Energy of a spin configuration is a sum of local energies:

$$z \longrightarrow \bigoplus_{w}^{l} W \to W = R(z, w)_{ij}^{kl}, \quad E = -k_B T \sum_{\text{vertices}} \log R$$

R-matrix $R(z, w) = (R(z, w)_{ij}^{kl}) \in \text{End}(V^{\otimes 2})$, dim V = N

For special models, *R* satisfies the Yang–Baxter equation (YBE)

$$\begin{aligned} R_{23}(z_2-z_3)R_{13}(z_2-z_3)R_{12}(z_1-z_2) \\ &= R_{12}(z_1-z_2)R_{13}(z_1-z_3)R_{23}(z_2-z_3) \in \operatorname{End}(V^{\otimes 3}) \,. \end{aligned}$$

Equality between two configurations of 3 lines in \mathbb{R}^2 :

YBE with spectral parameters implies integrability:

- ▶ 2D classical lattice model \leftrightarrow (1+1)D quantum spin chain
- Commuting conserved charges acting on the Hilbert space, generating the center of the Yangian.

INTRODUCTION 00000

In the past 15 years, YBE has appeared in many supersymmetric quantum field theories (SUSY QFTs):

- ▶ $2D \mathcal{N} = (2, 2)$ SUSY gauge theories [Nekrasov-Shatashvili]
- $4D \mathcal{N} = 2 \text{ SUSY gauge theories [Nekrasov-Shatashvili]}$
- ▶ 3D $\mathcal{N} = 4$ SUSY gauge theories

[Bullimore–Dimofte–Gaiotto, Braverman–Finkelberg–Nakajima]

• $4D \mathcal{N} = 1$ SUSY gauge theories

[Gaiotto-Rastelli-Razamat, Gadde-Gukov, Maruvoshi-Y]

• 4D Chern–Simons theory (= Ω -deformed 6D MSYM)

[Costello, Costello-Witten-Yamazaki]

All of these have realization in string theory and are related by dualities. [Costello-Y]

3D analog of YBE: tetrahedron equation (TE) [Zamolodchikov '80]

 $R_{234}R_{134}R_{124}R_{123} = R_{123}R_{124}R_{134}R_{234}$

Equality between two configurations of 4 planes in \mathbb{R}^3 :

Relatively long history. (Before BPZ on 2D CFT!)

Far less developed than YBE. (Only one book [Kuniba '22] on TE!)

But it could be as rich. (Recent progress from the viewpoint of quantized coordinate rings [Kapranov-Voevodsky, Kuniba-Okado, ...])

Reminder: we live in 3D space!

INTRODUCTION 00000

A well-known solution of TE [Kapranov-Voevodsky, Bazhanov-Sergeev] and its super version [Sergeev, Yoneyama] are conjectured to arise from a brane system in M-theory [Y'22].

Today: my work with Xiao-yue Sun [2211.10702], where we

- constructed solutions of TE using trivial cluster transformations; and
- ► expressed them as partition functions of 3D N = 2 SUSY gauge theories on S³.

First time for TE to appear in gauge theory.¹

Should be related to 3-manifolds ("3D-3D correspondence").

¹RLLL relations had been found to arise from gauge theories and cluster algebras [Yamazaki '16, Gavrylenko–Semenyakin–Zenkevich '20].

Symmetric group S_n : group of permutations on $\{1, 2, ..., n\}$, generated by the adjacent transpositions $\{s_a\}_{a=1}^{n-1}$ satisfying

$$\begin{aligned} s_a^2 &= 1 \,, \\ s_a s_b &= s_b s_a \quad \text{for } |a - b| \geq 2 \quad (\text{far commutativity}) \,, \\ s_a s_{a+1} s_a &= s_{a+1} s_a s_{a+1} \qquad (\text{braid relation}) \,. \end{aligned}$$

An expression $s_{a_1}s_{a_2}\cdots s_{a_k}$ can be represented by a wiring diagram. E.g.

This is a reduced expression for the longest element of S^4

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

To a wiring diagram we assign three quivers, which we call the triangle quiver, square quiver and butterfly quiver:

1. Around each crossing place vertices and arrows as follows:

- 2. Delete 2-cycles: $\rightarrow \circ$
- 3. Label vertices.

E.g. the three quivers assigned to $s_1s_2s_3s_1s_2s_1$ (labels omitted):

From now on we only consider the square quiver.

INTRODUCTION

Conclusions

A quiver (or "seed") $\Sigma = (I, \varepsilon)$:

- vertices indexed by a set I
- # arrows $i \xrightarrow{\varepsilon_{ij}} i$ encoded in an antisymmetric matrix ε

A mutation μ_k at $k \in I$ transforms Σ to $\Sigma' = (I, \varepsilon')$:

- 1. For each $i \rightarrow k \rightarrow j$, draw an arrow $i \rightarrow j$.
- 2. Change $i \to k$ to $i \leftarrow k$.
- 3. Delete 2-cycles.

An automorphism $\alpha \colon \Sigma \to \Sigma'$ permutes vertices: $\varepsilon'_{\alpha(i)\alpha(i)} = \varepsilon_{ij}$.

A cluster transformation $\mathbf{c} \colon \Sigma \to \Sigma'$ is a composition of mutations and automorphisms; it can be put in the form

$$\mathbf{c}\colon \Sigma =: \Sigma[1] \xrightarrow{\mu_{k[1]}} \Sigma[2] \xrightarrow{\mu_{k[2]}} \cdots \xrightarrow{\mu_{k[L]}} \Sigma[L+1] \xrightarrow{\alpha} \Sigma'.$$

INTRODUCTION	Wires &
00000	0000

QUIVERS DUALITY, YBE & TE

Quantum CT 0000 CT, TE & 3D gauge theories 00 Conclusions 00

The braid move

induces a cluster transformation on the assigned quiver:

INTRODUCTION	Wires & Quivers	Duality, YBE & TE	Quantum CT	CT, TE & 3D gauge theories	Conclusion
00000	0000	●000	0000	00	00

A quiver specifies a 4D \mathcal{N} = 1 SUSY gauge theory:

- vertex *i*: gauge group $SU(N)_i$
- frozen vertex f: global symmetry group $SU(N)_f$
- arrow $i \to j$: matter in rep $(\overline{\Box}, \Box)$ of $SU(N)_i \times SU(N)_j$

Amalgamation of quivers at frozen vertices = coupling the corresponding theories by gauging

E.g. the theory specified by $s_1s_2s_1$ is constructed from three theories:

Mutations induce Seiberg duality: theories related by quiver mutations describe the same infrared physics.

A physical quantity *X* in dual theories $T \cong T^{\vee}$ gives an equality $X[T] = X[T^{\vee}]$. In particular,

$$X\begin{bmatrix}3\\2\\1\end{bmatrix} = X\begin{bmatrix}3\\2\\1\end{bmatrix}.$$

For a nice quantity we have decomposition

$$Z\begin{bmatrix}3\\2\\1\end{bmatrix} = Z\begin{bmatrix}2\\1\end{bmatrix} \circ Z\begin{bmatrix}3\\1\end{bmatrix} \circ Z\begin{bmatrix}3\\2\end{bmatrix} \circ Z\begin{bmatrix}3\\2\end{bmatrix}$$

Thus we obtain a solution of YBE

$$R_{ab}=Z\left[\begin{array}{c}b\\a\end{array}\right].$$

E.g. partition function on $S^1 \times S^3$ gives R with spins in $\mathrm{U}(1)^{N-1}$.

Conclusions 00

Instead of physical quantities, consider the Hilbert space of states \mathcal{H} . Then we get an isomorphism:

$$R_{abc}: \mathcal{H}\left[\begin{array}{c}c\\b\\a\end{array}\right] \xrightarrow{\sim} \mathcal{H}\left[\begin{array}{c}c\\b\\a\end{array}\right] \xrightarrow{\sim} \mathcal{H}\left[\begin{array}{c}c\\b\\a\end{array}\right].$$

The loop of braid moves

shows

$$R_{234}^{-1}R_{134}^{-1}R_{124}^{-1}R_{123}^{-1}R_{234}R_{134}R_{124}R_{123} \in \operatorname{End}\left(\mathcal{H}\left[\swarrow \right]\right).$$

Wires & Quivers 0000 Duality, YBE & TE 000● Quantum CT 0000

CT, TE & 3D gauge theories 00 Conclusions 00

If this endomorphism is trivial, *R*_{abc} solves TE:

 $R_{234}R_{134}R_{124}R_{123} = R_{123}R_{124}R_{134}R_{234}.$

I don't know if this is the case for 4D SUSY gauge theories.

But this does happen for 1D bosonic QFTs that arise in the context of quantum cluster varieties [Fock-Goncharov].

Introduction Wires & quivers Duality, YBE & TE Quantum CT CT, TE & 3D gauge theories Conclusions 0000 000 000 000 000 00 00 00

Quantum torus algebra \mathbf{D}_{Σ}^{q} :

- ► formal parameter *q*
- noncommutative variables $(X^q, B^q) = (X^q_i, B^q_i)_{i \in I}$

$$q^{-\varepsilon_{ij}}X_{i}^{q}X_{j}^{q} = q^{-\varepsilon_{ji}}X_{j}^{q}X_{i}^{q}, \quad q^{-\delta_{ij}}X_{i}^{q}B_{j}^{q} = q^{\delta_{ij}}B_{j}^{q}X_{i}^{q}, \quad B_{i}^{q}B_{j}^{q} = B_{j}^{q}B_{i}^{q}.$$

 $\mathbf{c} \colon \Sigma \to \Sigma'$ induces a quantum cluster transformation

$$\mathbf{c}^q \colon \mathbb{D}^q_{\Sigma'} \xrightarrow{\sim} \mathbb{D}^q_{\Sigma}$$

between the fraction fields of \mathbf{D}_{Σ}^{q} and $\mathbf{D}_{\Sigma'}^{q}$.

 \mathbf{c}^q quantizes a transition function for the cluster \mathcal{D} -variety, equipped with the Poisson structure

$$\{X_i, X_j\} = \varepsilon_{ij} X_i X_j, \quad \{X_i, B_j\} = \delta_{ij} X_i B_j, \quad \{B_i, B_j\} = 0.$$

Heisenberg algebra $\mathbf{H}_{\Sigma}^{\hbar}$:

• formal parameter \hbar

• variables
$$x^{\hbar} = (x_i^{\hbar})_{i \in I}$$
, $b^{\hbar} = (b_i^{\hbar})_{i \in I}$

$$[x^{\hbar}_i,x^{\hbar}_j]=2\pi\mathrm{i}\hbararepsilon_{ij}\,,\quad [x^{\hbar}_i,b^{\hbar}_j]=2\pi\mathrm{i}\hbar\delta_{ij}\,,\quad [b^{\hbar}_i,b^{\hbar}_j]=0\,.$$

We have $\mathbf{D}_{\Sigma}^{q} \hookrightarrow \mathbf{H}_{\Sigma}^{\hbar}$ by

$$q = \exp(\pi i\hbar), \quad X_i^q = \exp(x_i^\hbar), \quad B_i^q = \exp(b_i^\hbar).$$

 $\mathbf{H}_{\Sigma}^{\hbar}$ can be represented on the Hilbert space $\mathcal{H}_{\Sigma} = L^2(\mathbb{R}^I)$:

$$\widehat{}: x_i^{\hbar} \mapsto \hat{x}_i := \pi i \hbar \frac{\partial}{\partial a_i} - \sum_{j \in I} \varepsilon_{ij} a_j, \quad b^{\hbar} \mapsto \hat{b}_i := 2a_i.$$

For $\hbar \in \mathbb{R}_{>0}$, this assigns a quantum mechanical system to Σ .

Introduction	Wires & quivers	Duality, YBE & TE	Quantum CT	CT, TE & 3D gauge theories	Conclusion
00000	0000	0000	00●0	00	00

 $\mathbf{c} \colon \Sigma \to \Sigma'$ induces duality:

- States are mapped by a unitary operator $K_c \colon \mathcal{H}_{\Sigma'} \to \mathcal{H}_{\Sigma}$.
- Operators are mapped by $\mathbf{K}_{\mathbf{c}}\widehat{A}\mathbf{K}_{\mathbf{c}}^{-1} = \widehat{\mathbf{c}^{q}(A)}$.

For an automorphism $\mathbf{c} = \alpha$, \mathbf{K}_{α} relabels coordinates.

For a mutation $\mathbf{c} = \mu_k$, there are two expressions [Kim '21]:

$$\mathbf{K}_{\mu_k} := \mathbf{K}_{\mu_k}^{\sharp(+)} \mathbf{K}_{\mu_k}^{\prime(+)} = \mathbf{K}_{\mu_k}^{\sharp(-)} \mathbf{K}_{\mu_k}^{\prime(-)}$$

 $\mathbf{K}_{\mu_k}^{\prime(\epsilon)} \colon \mathcal{H}_{\Sigma'} o \mathcal{H}_{\Sigma}$ is given by

$$a'_{i} = \begin{cases} -a_{k} + \sum_{j \in I} [-\epsilon \varepsilon_{kj}]_{+} a_{j} & \text{if } i = k; \\ a_{i} & \text{if } i \neq k. \end{cases}$$

$$\begin{split} \mathbf{K}_{\mu_{k}}^{\sharp(\epsilon)} \colon \mathcal{H}_{\Sigma} \to \mathcal{H}_{\Sigma} \text{ is a product of } two \text{ noncompact q-dilogs:} \\ \mathbf{K}_{\mu_{k}}^{\sharp(\epsilon)} = \Phi^{\hbar}(\epsilon \hat{x}_{k})^{\epsilon} \Phi^{\hbar}(\epsilon \hat{\tilde{x}}_{k})^{-\epsilon}, \quad \hat{\tilde{x}}_{i} := \pi \mathrm{i}\hbar \frac{\partial}{\partial a_{i}} + \sum_{j \in I} \varepsilon_{ij} a_{j}. \end{split}$$

Let's say $\mathbf{c}: \Sigma \to \Sigma$ is trivial if $\mathbf{c}^q = \mathrm{id}_{\mathbb{D}^q_{\Sigma}}$.

If **c** is trivial, **K**_c commutes with \hat{X} and \hat{B} by construction.

It turns out that $\mathbf{K}_{\mathbf{c}}$ also commutes with $\widehat{X}^{1/\hbar}$ and $\widehat{B}^{1/\hbar}$, and this implies $\mathbf{K}_{\mathbf{c}} = \lambda_{\mathbf{c}} \operatorname{id}_{\mathcal{H}_{\Sigma}}$ for some $\lambda_{\mathbf{c}} \in \mathrm{U}(1)$ [Fock–Goncharov].

Kim showed $\lambda_c = 1$ for some important cases. In fact,

If $\mathbf{c} \colon \Sigma \to \Sigma$ is trivial, then $\mathbf{K}_{\mathbf{c}} = \mathrm{id}_{\mathcal{H}_{\Sigma}}$.

For $\mathbf{c}: \Sigma =: \Sigma[1] \xrightarrow{\mu_{k[1]}} \Sigma[2] \xrightarrow{\mu_{k[2]}} \cdots \xrightarrow{\mu_{k[L]}} \Sigma[L+1] \xrightarrow{\alpha} \Sigma$, we have a choice of signs $(\epsilon[1], \epsilon[2], \ldots, \epsilon[L])$. For the tropical sign sequence, the theorem reduces to a noncompact q-dilog identity [Kashaev–Nakanishi] times its complex conjugate.

Wires & quivers 0000 Duality, YBE & TE 0000 Quantum CT 0000 CT, TE & 3D gauge theories ●0 Conclusions 00

For the triangle, square and butterfly quivers, the loop

gives rise to a trivial cluster transformation [Sun-Y].

Need only check that **c** acts trivially on the tropical variables [Inoue–Iyama–Keller–Kuniba–Nakanishi].

Therefore, $R_{abc} := \mathbf{K}_{\beta_{abc}}$ solves TE.

The matrix element $\langle a' | \mathbf{K}_{\mathbf{c}} | a \rangle$ can be expressed as an integral of q-dilogs [Kashaev-Nakanishi].

OUANTUM CT

CT, TE & 3D GAUGE THEORIES

0

Conclusions

Duality, YBE & TE

INTRODUCTION

WIRES & OUIVERS

The result coincides with an expression of the partition function of a 3D N = 2 SUSY gauge theory on the squashed 3-sphere

$$S_b^3 := \{(z_1, z_2) \in \mathbb{C}^2 \mid b |z_1|^2 + b^{-1} |z_2|^2 = 1\}, \quad b = \sqrt{\hbar}.$$

Similar to [Terashima-Yamazaki] but we have twice as many q-dilogs. This theory is a domain wall in $4D \mathcal{N} = 2$ SUSY theories. We expect that TE holds at the level of domain walls.

Related to 3-manifolds, built from tetrahedra attached to triangulated surfaces.

Introduction Wires & quivers Duality, YBE & TE Quantum CT CT, TE & 3D gauge theories 00000 0000 0000 0000 00

TE is a 3D analog of YBE, important but not well-understood.

YBE & TE (& their higher-dimensional analogs) can be understood in terms of S_n , or wiring diagrams:

- ► For YBE, R-matrices are adjacent transpositions, satisfying $s_1s_2s_1 = s_2s_1s_2$.
- ▶ For TE, R-matrices are braid moves $s_a s_{a+1} s_a \rightarrow s_{a+1} s_a s_{a+1}$.

To wiring diagrams we can assign quivers and QFTs such that braid moves are translated to mutations and dualities:

- ► Partition functions of dual 4D theories give rise to YBE.
- Isomorphisms between Hilbert spaces of dual Fock–Goncharov QM systems are solutions of TE.

These solutions of TE can be identified with S^3 partition functions of 3D SUSY gauge theories.

Wires & quivers 0000 Duality, YBE & TE 0000 Quantum CT 0000

CT, TE & 3D gauge theories

Conclusions

Can we produce more solutions of TE?

Can we reproduce known solutions?

Can we understand solutions from 3-manifold viewpoint?

Can we relate this story to wall-crossing of BPS particles in 4D $\mathcal{N} = 2$ SUSY QFTs?

Can we say anything about realistic 3D statistical mechanics systems?