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Lattice spin model in classical statistical mechanics:

z1

z2

z3 z4 z5

Spectral parameters z1, z2, . . . , zm+n ∈ C assigned to lines

Spin variables ∈ {1, 2, . . . ,N} on edges interact at vertices.

Energy of a spin configuration is a sum of local energies:
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R-matrix R(z,w) = (R(z,w)klij ) ∈ End(V⊗2), dimV = N
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For special models, R satisfies the Yang–Baxter equation (YBE)

R23(z2 − z3)R13(z2 − z3)R12(z1 − z2)

= R12(z1 − z2)R13(z1 − z3)R23(z2 − z3) ∈ End(V⊗3) .

Equality between two configurations of 3 lines in R2:
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YBE with spectral parameters implies integrability:

I 2D classical lattice model↔ (1+1)D quantum spin chain
I Commuting conserved charges acting on the Hilbert space,

generating the center of the Yangian.
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In the past 15 years, YBE has appeared in many
supersymmetric quantum field theories (SUSY QFTs):

I 2D N = (2, 2) SUSY gauge theories [Nekrasov–Shatashvili]

I 4D N = 2 SUSY gauge theories [Nekrasov–Shatashvili]

I 3D N = 4 SUSY gauge theories
[Bullimore–Dimofte–Gaiotto, Braverman–Finkelberg–Nakajima]

I 4D N = 1 SUSY gauge theories
[Gaiotto–Rastelli–Razamat, Gadde–Gukov, Maruyoshi–Y]

I 4D Chern–Simons theory (= Ω-deformed 6D MSYM)
[Costello, Costello–Witten–Yamazaki]

All of these have realization in string theory and are related by
dualities. [Costello–Y]
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3D analog of YBE: tetrahedron equation (TE) [Zamolodchikov ’80]

R234R134R124R123 = R123R124R134R234

Equality between two configurations of 4 planes in R3:

R123

R134

R124

R234

=

R123

R134

R234

R124

Relatively long history. (Before BPZ on 2D CFT!)

Far less developed than YBE. (Only one book [Kuniba ’22] on TE!)

But it could be as rich. (Recent progress from the viewpoint of
quantized coordinate rings [Kapranov–Voevodsky, Kuniba–Okado, . . . ])

Reminder: we live in 3D space!
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A well-known solution of TE [Kapranov–Voevodsky, Bazhanov–Sergeev]
and its super version [Sergeev, Yoneyama] are conjectured to arise
from a brane system in M-theory [Y ’22].

Today: my work with Xiao-yue Sun [2211.10702], where we

I constructed solutions of TE using trivial cluster
transformations; and

I expressed them as partition functions of 3D N = 2 SUSY
gauge theories on S3.

First time for TE to appear in gauge theory.1

Should be related to 3-manifolds (“3D-3D correspondence”).

1RLLL relations had been found to arise from gauge theories and cluster
algebras [Yamazaki ’16, Gavrylenko–Semenyakin–Zenkevich ’20].
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Symmetric group Sn: group of permutations on {1, 2, . . . ,n},
generated by the adjacent transpositions {sa}n−1

a=1 satisfying

s2a = 1 ,
sasb = sbsa for |a− b| ≥ 2 (far commutativity) ,
sasa+1sa = sa+1sasa+1 (braid relation) .

An expression sa1sa2 · · · sak can be represented by a wiring
diagram. E.g.

s1s2s3s1s2s1 =

1
2
3
4

4
3
2
1

This is a reduced expression for the longest element of S4(
1 2 3 4
4 3 2 1

)
.
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To a wiring diagram we assign three quivers, which we call the
triangle quiver, square quiver and butterfly quiver:

1. Around each crossing place vertices and arrows as follows:

triangle square butterfly

2. Delete 2-cycles: →
3. Label vertices.

E.g. the three quivers assigned to s1s2s3s1s2s1 (labels omitted):

From now on we only consider the square quiver.
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A quiver (or “seed”) Σ = (I, ε):

I vertices indexed by a set I
I # arrows i

εij−→ j encoded in an antisymmetric matrix ε

A mutation µk at k ∈ I transforms Σ to Σ′ = (I, ε′):

1. For each i→ k → j, draw an arrow i→ j.
2. Change i→ k to i← k.
3. Delete 2-cycles.

An automorphism α : Σ→ Σ′ permutes vertices: ε′α(i)α(j) = εij.

A cluster transformation c : Σ→ Σ′ is a composition of
mutations and automorphisms; it can be put in the form

c : Σ =: Σ[1]
µk[1]−−→ Σ[2]

µk[2]−−→ · · ·
µk[L]−−→ Σ[L + 1]

α−→ Σ′ .
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The braid move

a
b
c

βabc−−→
a
b
c

induces a cluster transformation on the assigned quiver:
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A quiver specifies a 4D N = 1 SUSY gauge theory:

I vertex i: gauge group SU(N)i

I frozen vertex f : global symmetry group SU(N)f

I arrow i→ j: matter in rep (�,�) of SU(N)i × SU(N)j

Amalgamation of quivers at frozen vertices
= coupling the corresponding theories by gauging

E.g. the theory specified by s1s2s1 is constructed from three
theories:
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Mutations induce Seiberg duality: theories related by quiver
mutations describe the same infrared physics.

A physical quantity X in dual theories T ∼= T∨ gives an equality
X[T] = X[T∨]. In particular,

X

[
1
2
3

]
= X

[
1
2
3

]
.

For a nice quantity we have decomposition

Z

[
1
2
3

]
= Z

[
1
2

]
◦ Z
[

1
3

]
◦ Z
[

2
3

]
.

Thus we obtain a solution of YBE

Rab = Z
[

a
b

]
.

E.g. partition function on S1× S3 gives R with spins in U(1)N−1 .
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Instead of physical quantities, consider the Hilbert space of
statesH. Then we get an isomorphism:

Rabc : H

[
a
b
c ]

∼−→ H

[
a
b
c ]

.

The loop of braid moves

β234−−→ β134−−→ −→ β124−−→ β123−−→
↑ ↓

β−1
123←−−

β−1
124←−− ←−

β−1
134←−−

β−1
234←−−

shows

R−1
234R

−1
134R

−1
124R

−1
123R234R134R124R123 ∈ End

(
H
[ ])

.
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If this endomorphism is trivial, Rabc solves TE:

R234R134R124R123 = R123R124R134R234 .

=

I don’t know if this is the case for 4D SUSY gauge theories.

But this does happen for 1D bosonic QFTs that arise in the
context of quantum cluster varieties [Fock–Goncharov].
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Quantum torus algebra Dq
Σ:

I formal parameter q
I noncommutative variables (Xq,Bq) = (Xq

i ,B
q
i )i∈I

q−εijXq
i X

q
j = q−εjiXq

j X
q
i , q−δijXq

i B
q
j = qδijBq

jX
q
i , Bq

iB
q
j = Bq

jB
q
i .

c : Σ→ Σ′ induces a quantum cluster transformation

cq : Dq
Σ′
∼−→ Dq

Σ

between the fraction fields of Dq
Σ and Dq

Σ′ .

cq quantizes a transition function for the cluster D-variety,
equipped with the Poisson structure

{Xi,Xj} = εijXiXj , {Xi,Bj} = δijXiBj , {Bi,Bj} = 0 .
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Heisenberg algebra H~
Σ:

I formal parameter ~
I variables x~ = (x~i )i∈I , b~ = (b~i )i∈I

[x~i , x~j ] = 2πi~εij , [x~i , b~j ] = 2πi~δij , [b~i , b~j ] = 0 .

We have Dq
Σ ↪→ H~

Σ by

q = exp(πi~) , Xq
i = exp(x~i ) , Bq

i = exp(b~i ) .

H~
Σ can be represented on the Hilbert spaceHΣ = L2(RI):

̂ : x~i 7→ x̂i := πi~ ∂

∂ai
−
∑
j∈I

εijaj , b~ 7→ b̂i := 2ai .

For ~ ∈ R>0, this assigns a quantum mechanical system to Σ.
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c : Σ→ Σ′ induces duality:
I States are mapped by a unitary operator Kc : HΣ′ → HΣ.
I Operators are mapped by KcÂK−1

c = ĉq(A).

For an automorphism c = α, Kα relabels coordinates.

For a mutation c = µk, there are two expressions [Kim ’21]:

Kµk := K](+)
µk

K′(+)
µk

= K](−)
µk

K′(−)
µk

.

K′(ε)µk : HΣ′ → HΣ is given by

a′i =

{
−ak +

∑
j∈I[−εεkj]+aj if i = k ;

ai if i 6= k .

K](ε)
µk : HΣ → HΣ is a product of two noncompact q-dilogs:

K](ε)
µk

= Φ~(εx̂k)εΦ~(εˆ̃xk)−ε , ˆ̃xi := πi~ ∂

∂ai
+
∑
j∈I

εijaj .
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Let’s say c : Σ→ Σ is trivial if cq = idDq
Σ
.

If c is trivial, Kc commutes with X̂ and B̂ by construction.

It turns out that Kc also commutes with X̂1/~ and B̂1/~, and this
implies Kc = λc idHΣ

for some λc ∈ U(1) [Fock–Goncharov].

Kim showed λc = 1 for some important cases. In fact,

If c : Σ→ Σ is trivial, then Kc = idHΣ
.

For c : Σ =: Σ[1]
µk[1]−−→ Σ[2]

µk[2]−−→ · · ·
µk[L]−−→ Σ[L + 1]

α−→ Σ, we have a
choice of signs (ε[1], ε[2], . . . , ε[L]). For the tropical sign sequence, the
theorem reduces to a noncompact q-dilog identity [Kashaev–Nakanishi]
times its complex conjugate.
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For the triangle, square and butterfly quivers, the loop

β234−−→ β134−−→ −→ β124−−→ β123−−→
↑ ↓

β−1
123←−−

β−1
124←−− ←−

β−1
134←−−

β−1
234←−−

gives rise to a trivial cluster transformation [Sun–Y].

Need only check that c acts trivially on the tropical variables
[Inoue–Iyama–Keller–Kuniba–Nakanishi].

Therefore, Rabc := Kβabc solves TE.
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The matrix element 〈a′|Kc|a〉 can be expressed as an integral of
q-dilogs [Kashaev–Nakanishi].

The result coincides with an expression of the partition function
of a 3D N = 2 SUSY gauge theory on the squashed 3-sphere

S3
b := {(z1, z2) ∈ C2 | b|z1|2 + b−1|z2|2 = 1} , b =

√
~ .

Similar to [Terashima–Yamazaki] but we have twice as many q-dilogs.

This theory is a domain wall in 4D N = 2 SUSY theories.

We expect that TE holds at the level of domain walls.

Related to 3-manifolds, built from tetrahedra attached to
triangulated surfaces.
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TE is a 3D analog of YBE, important but not well-understood.

YBE & TE (& their higher-dimensional analogs) can be
understood in terms of Sn, or wiring diagrams:

I For YBE, R-matrices are adjacent transpositions, satisfying
s1s2s1 = s2s1s2.

I For TE, R-matrices are braid moves sasa+1sa → sa+1sasa+1.

To wiring diagrams we can assign quivers and QFTs such that
braid moves are translated to mutations and dualities:

I Partition functions of dual 4D theories give rise to YBE.
I Isomorphisms between Hilbert spaces of dual

Fock–Goncharov QM systems are solutions of TE.

These solutions of TE can be identified with S3 partition
functions of 3D SUSY gauge theories.
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Can we produce more solutions of TE?

Can we reproduce known solutions?

Can we understand solutions from 3-manifold viewpoint?

Can we relate this story to wall-crossing of BPS particles in 4D
N = 2 SUSY QFTs?

Can we say anything about realistic 3D statistical mechanics
systems?
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